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EXTREMELY LOW FREQUENCY (ELF) PROPAGATION FORMULAS
FOR DIPOLE SOURCES RADIATING IN A
SPHERICAL EARTH-IONOSPHERE WAVEGUIDE

1. INTRODUCTION

Extremely low frequency (ELF) propagation formulas for dipole sources radiating in a
spherical earth-ionosphere waveguide (figure 1-1) have been derived by various authors.
Developments of such formulas are provided in the texts written by J. R. Wait (reference 1) and
J. Galejs (reference 2). These spherical waveguide formulas have been derived for a uniform earth
and ionosphere and, depending on the field component, have a range dependence characterized by
either the Legendre function of the first kind of complex degree and order zero or one of its first
two derivatives. In the ELF band (defined here as 30 to 300 Hz), because the ionospheric
reflection height is less than one-half of a free-space wavelength, the only propagating mode in the
earth-ionosphere waveguide is the zeroth-order transverse magnetic (TM) mode, which is
commonly referred to as the quasi-transverse electromagnetic (quasi-TEM) mode.

DIPOLE
/ SOURCE

-
Zs

CENTER
OF EARTH (o)

Figure 1-1. Spherical Coordinate System Description of the Earth-lonosphere Waveguide



To predict the fields more accurately at ranges closer to the source or to account for more
complicated boundary conditions, various investigators have incorporated the earth-flattening
approximation into their ELF propagation formulas. In this approximation, the Legendre
function range dependence is approximated by the product of a Hankel function and a curvature
correction term (spherical earth spreading factor). As a result, the fields are derived from a
planar earth-ionosphere waveguide model and then multiplied by the curvature correction term.
For example, Bannister (reference 3) has derived ELF propagation formulas based on the earth-
flattening approximation that extend the results of Wait and Galejs to closer ranges from the
source. Whereas the spherical waveguide formulas given by Wait and Galejs are valid for ranges
greater than approximately three ionospheric reflection heights from the source, Bannister’s
formulas are valid in the quasi-nearfield range, which is defined as the range where the
measurement distance is greater than an earth wavelength, but much less than a free-space
wavelength. However, Bannister’s approximate formulas are not valid at field points close to the

antipode where the simple spherical focusing factor fails.

To account for the anisotropic surface impedance in the vicinity of a horizontal electric
dipole (HED) at ELF, Wolkoff and Kraimer (references 4 and 5) have listed propagation
formulas that are modifications of Bannister’s HED formulas. Wolkoff and Kraimer’s formulas
account for the anisotropic ground through the use of two complex-valued antenna pattern
factors. These antenna pattern factors are unique for a given HED and must be determined from
near-field measurements of the antenna. Wolkoff and Kraimer have determined the antenna
pattern factors for each of the U.S. Navy’s ELF transmitting antennas (reference 4). Wolkoff
and Kraimer’s propagation formulas have been formally derived from Bannister’s formulas by

Casey (reference 6) through use of the reciprocity theorem.

For prediction of the ELF fields from dipole sources at antipodal ranges, propagation
formulas that are valid out to approximately 20 Mm from the source must be applied. In a recent
report (reference 7), approximate formulas for a HED source that contain the proper range
dependence at antipodal ranges in a spherical earth-ionosphere waveguide, referred to as
“antipode-centered propagation formulas,” were derived. These HED formulas are based on
Burrow’s simple parallel-plate waveguide approximation of the earth-ionosphere waveguide
(reference 8) and include a curvature correction factor. In reference 7, the antipode-centered

propagation formulas were compared with Bannister’s HED formulas (direct and indirect great-



circle path fields were combined) under various propagation conditions, where both the source
and field points are located on the earth’s surface. The results showed that Bannister’s vertical
electric field and radial magnetic field formulas (magnitude only) agree to within 1 dB of the
corresponding antipode-centered formulas for ranges greater than 0.97 Mm to 1.13 Mm from the
antipode, depending on the propagation conditions. In addition, Bannister’s azimuthal magnetic
field formula agrees to within 1 dB of the corresponding antipode-centered formula for ranges

greater than 3.17 Mm to 3.72 Mm from the antipode, depending on the propagation conditions.

In this report, ELF propagation formulas for dipole sources radiating in a spherical earth-
ionosphere waveguide are derived from first principles. These derivations are presented because
the developments given by previous authors were found to be difficult to follow. The formulas
derived here are based on the assumptions of a homogeneous, isotropic earth and a
homogeneous, isotropic ionosphere of constant reflection height. As a result, the earth and
ionosphere boundaries are modeled as scalar surface impedances. The spherical waveguide
formulas are expressed in terms of series expansions of TM and transverse electric (TE) modes.
However, at ELF, the only mode of practical interest is the quasi-TEM mode. The computed
results for the spherical waveguide formulas presented in this report are based on an exact
hypergeometric series representation of the Legendre function of the first kind. The propagation
formulas for a horizontal magnetic dipole (HMD) can be derived from the HED formulas
through application of the duality principle (reference 2).

In addition, in this report, through appropriate approximations of the range dependence, it
will be shown how the spherical waveguide formulas (for both vertical electric dipole (VED) and
HED sources) can reduce to Bannister’s formulas or to the antipode-centered formulas. It will
also be shown how the quasi-TEM spherical waveguide formulas derived for a HED located at
the surface of the earth can be modified to account for the anisotropic surface impedance in the
vicinity of the antenna. These modified spherical waveguide formulas will include Wolkoff and
Kraimer’s antenna pattern factors and will be useful for prediction of the electromagnetic (EM)
fields radiated by the U. S. Navy’s four transmitting antennas at antipodal ranges. Detailed
derivations of approximate formulas for the Legendre function range dependence are given in the
appendices. Comparisons of the spherical waveguide propagation formulas with both
Bannister’s direct great-circle path and total field (direct plus indirect great-circle paths)
formulas are presented for the surface magnetic field and vertical electric field components under
various propagation conditions. The field comparisons are presented at several frequencies for



both VED and HED sources at ranges that extend from 1 Mm from the source to the antipode,
where both the source and field points are located at the earth’s surface. These comparisons will
help to more accurately establish the maximum ranges over which Bannister’s approximate
formulas are valid.
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2. APPLICATION OF PARALLEL-PLATE WAVEGUIDE MODEL FOR
DETERMINATION OF APPROXIMATE MODE CUTOFF FREQUENCIES

To obtain a basic understanding of EM propagation in a spherical earth-ionosphere waveguide
in the ELF band, it is helpful to formulate the problem under the assumption of planar boundaries.
Such an approach has been applied by Burrows (reference 8) and Budden (reference 9). In the
ELF band, both the earth and ionosphere appear as nearly perfect conductors (references 2 and 8).
Therefore, in this section, the TEM, TM, and TE modes are derived for a parallel-plate waveguide
with perfectly conducting walls.

The analysis of this section will show that, because the ionospheric reflection height is much
less than a free-space wavelength at ELF, the TEM mode is the only propagating mode. The
TEM mode is characterized by electric and magnetic fields that are oriented perpendicular to the
direction of propagation. If the finite conductivity of the earth and ionosphere are considered,
the TEM mode configuration is perturbed to the quasi-TEM mode. The quasi-TEM mode
includes surface electric- and magnetic-field components that lie along the direction of
propagation. Therefore, the quasi-TEM mode is the only mode of practical concern at ELF.

The cutoff frequencies for the dominant TE and TM modes are given for several representative
ionospheric reflection heights. The propagation formulas for dipole sources radiating in a

parallel-plate waveguide with finitely conducting boundaries have been derived by Burrows
(reference 8) and will not be presented in this report.

2.1 TEM AND TM MODES

Consider the parallel-plate waveguide model of the earth-ionosphere waveguide, as shown
in figure 2-1. In this model, the z-direction is normal to the planar boundaries and the x-direction
denotes the direction of propagation. Because the parallel-plate waveguide is a two-dimensional
model, it is assumed that there is no variation along the y-direction, i.e., ? /?y = 0 for all field
components. For simplicity, the earth and ionosphere are both assumed to be perfectly

conducting.

Appendix A provides a derivation of the EM fields in terms of potentials. These formulas
are based on an assumed time-harmonic dependence of e/%?, where @ = 27xfis the angular
frequency (rad/s), fis the frequency in Hertz (Hz), and j=+—=71 . A time-harmonic dependence
will be assumed in each of the field expressions presented in this report.
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Figure 2-1. Parallel-Plate Model of the Earth-Ionosphere Waveguide

In this section, the TEM and TM modes (with respect to the z-direction) are derived in terms
of the z component of the electric Hertz potential x¢; and the TE modes (with respect to the z-
direction) are derived in terms of the z component of the magnetic Hertz potential #/. The z
component of each potential is chosen in order to generate modes that will correspond with the

spherical waveguide modes that are derived in appendix C.

To derive the TEM and TM modes in the parallel-plate waveguide, consider the electric
Hertz potential & € that is given as

we=ZaEX2) » 2-1)

where Z denotes the unit vector along the z-direction. The electric Hertz vector is defined in
terms of the magnetic vector potential 4 in appendix A, expression (A-26a). The substitution of
this definition into the inhomogeneous vector Helmholtz equation for the magnetic vector
potential (A-6) yields
VxVxae—kige=-VPe+ L 2-2)
Jwe,
where k ,= /I € is the wave number in free space, U, and g, are the permeability and

permittivity, respectively, of free space, @¢ is the electric scalar potential, and J is the electric
current density. Note that expression (2-2) applies to a point lying in free space.




To eliminate @€ from the above equation, the Lorentz gauge condition (reference 10) is
applied, i.e.,

Veme+ d€=0 . (2-3)

The substitution of expression (2-3) into (2-2) yields

Vege+k2me=——1_J. -
n On jwso J (2 4)
To derive the TEM and TM modes, it is assumed that there are no sources so that J =0 in
formula (2-4). The following is obtained if expression (2-1) is substituted into equation (2-4):
02me 6235;

&
—k +
0x2 072

+k2me=0. (2-5)

Because the modes are assumed to propagate along the x-direction in the waveguide, m¢ canbe

expressed as

ai(x,2) = f(2) e M (2-6)

where k is the wave number (along the direction of propagation) and f{z) is a function to be
determined. The substitution of expression (2-6) into (2-5) yields

'@ +k%f(2) =0, @-7
where
K2=k2_k2 . (2-8)

In the above formula, &, is commonly referred to as the cutoff wave number (reference 10).

Expressions for the EM fields in terms of the electric- and magnetic-Hertz vectors are given
in formulas (A-27) and (A-28). For the TEM and TM modes, the magnetic-Hertz vector z* is
zero. Therefore, the substitution of equation (2-1) into the EM field formulas (A-27) and (A-28)
yields the following:

ang
0z

E =-jk (2-9a)

E =k%x¢, (2-9b)



and

Hy =—we kmxl - (2-9¢)

Note that the x variation defined in expression (2-6) has been accounted for in the above field

formulas. The field components listed above are the only nonzero components. Also, note that
because the TM modes are “transverse magnetic” with respect to the z-direction, H, = 0.

The solution of the differential equation (2-7) is given as
f(@)=c cosk z+c,sinkz, (2-10)

where ¢ and ¢, are arbitrary constants. To determine ¢ and c,, the boundary conditions at the

surfaces of the earth and ionosphere must be applied. Because the earth and ionosphere are
assumed to be perfectly conducting, the following boundary conditions apply:

E(x0)=0, z=0,h . (2-11)

The substitutions of expressions (2-9a) and (2-6) into the boundary conditions above yields

SO =frn=0. (2-12)

From formula (2-10), f’(z) is given as
f(@=-kc sinkz+k.c,coskz . (2-13)

The application of the boundary condition for f’ at z = 0 to formula (2-13) gives

kc,=0 . (2-14)

c

Therefore, the solutions of the above equation are k. =0 or ¢, = 0. If ¢, = 0, then the boundary
condition f'(p) = results in

kg, =2% , n=0,1,2,... 2-15)

cn h
The index » in the above formula denotes the mode index.

The substitution of the above result for £ (z) into expression (2-6) for x ¢ yields

wE(x,2) = ¢, cos(%) o™ I , 1=0,1,2, .., (2-16)



where k is given from formulas (2-8) and (2-15) as

2_p32 (hm\2 _ _
k _ko_(T) , n=0,1,2, ... (2-17)
A mode is said to be at cutoff when k£ = 0 or equivalently, when &, = k,. The cutoff wave
numbers for the TEM (» = 0) and TM modes (r = 1, 2, ...) are given in formula (2-15).

Therefore, the cutoff frequencies for these modes are given by

fn= s ken=55, n=0,1,2,..., (2-18)

where c denotes the speed of light in free space. Table 2-1 lists the cutoff frequencies for the
dominant modes in the parallel-plate waveguide as computed from expression (2-18) for several
representative ionospheric reflection heights. The table indicates that the TEM mode propagates at
all frequencies while the TM; mode does not propagate for frequencies below 1.67 kHz. Because
the frequency range of interest here lies below 300 Hz, the TM modes are of no concern.

Table 2-1. Cutoff Frequencies for TEM, TM,, and TM, Modes for a

Parallel-Plate Waveguide with Perfect Electrically Conducting
Boundaries for Several Waveguide Heights

h (km) Jeo (H2) fa(kHz) | f,(kHz)
50 0 3.00 6.00
75 0 2.00 4.00
90 0 1.67 3.33

E,= Jn:k sin(%) e"jkx, n=12,3, ..,
) nmz\ —jkx . _
E,=k cos(T)e M n=0,1,2, ...,
and
Hyn=—wso cos(%) e‘jkx, n=012,...

The TEM and TM fields are determined through the substitution of expression (2-16) into
formulas (2-9) to give the following:




In formulas (2-19), note that the arbitrary constant has been suppressed. It should be noted
that E, vanishes for the TEM mode (n = 0). This is consistent with the fact that the TEM mode
has no field component along the direction of propagation (reference 10). However, for a
finitely conducting boundary, E, does not vanish but is related to the surface magnetic field 4,
through the surface impedance of the boundary surface. For example, for a finitely conducting
earth with surface impedance 1),, E, is related to H,atz=0 as E, = -1, H,.

2.2 TE MODES
The derivation of the TE modes in the parallel-plate waveguide are very similar to the
derivation of the TM modes. Consider the magnetic Hertz potential #£* that is given as
xh=2% Jrél(x,z) . (2-20)
The magnetic Hertz vector is defined in terms of the electric vector potential F in expression

(A-26b). The substitution of this definition into the inhomogeneous vector Helmholtz equation
for the electric vector potential (A-11) yields

VxVxah—Kah=—Voh+ 1 _m

; , 2-21
Gon (2-21)

where @ is the magnetic scalar potential and M is the magnetic current density. It should be
noted that expression (2-21) applies to a point in free space.

To eliminate ®* from the above equation, the Lorentz gauge condition (reference 10) is

applied, i.e.,
V-xh+ dh=0. (2-22)
The substitution of expression (2-22) into (2-21) yields

Vigh 4 k2gh=-—1_ M | (2-23)
Jjou,

To derive the TE modes, it is assumed that there are no sources so that M = O in the above
formula. If expression (2-20) is substituted into equation (2-23), the following expression is
obtained:

10



ai’-ng a%gz
—
ax2 072

20h—
+kinl=0. (2-24)

Because the modes are assumed to propagate along the x-direction in the waveguide, &/ can be

expressed as

ah =2 ah(x,7) = % g(2) e~ *x, (2-25)

where g(z) is a function to be determined. The substitution of expression (2-25) into (2-24)
yields

g"'(0) +k%8()=0, (2-26)

C

where the cutoff wave number £, is defined in formula (2-8).

The TE mode EM fields can be obtained through the substitution of expression (2-20) into
formulas (A-27) and (A-28) with the electric Hertz vector 7 set to zero to yield the following:

E,=ou Kl (2-27a)
., ok
H, =-jk—=, (2-27b)
and
H,=ka} . (2-27¢)

Note that the x variation defined in expression (2-25) has been accounted for in the above field
formulas. The field components listed above are the only the nonzero components. Also, note

that because the TE modes are transverse electric with respect to the z-direction, we have E, = 0.
The solution of the differential equation (2-26) is given as
g(z)=c;cosk z+c,sink z (2-28)

where c3 and c 4 are arbitrary constants. To determine c5 and c 4, the boundary conditions at the

surfaces of the earth and ionosphere must be applied. Because the earth and ionosphere are
assumed to be perfectly conducting, the following boundary conditions exist:

E(x0)=0, z=0,h . (2-29)

11




The substitutions of expressions (2-27a) and (2-25) into the boundary conditions above yields

8(0) =g(h) =0 - (2-30)

The substitution of the boundary conditions (2-30) into expression (2-28) results in the following
solution:

gD =¢4 sin(m;:z) ,m=1,2,3, ... (2-31)

A comparison of formulas (2-28) and (2-31) shows that the cutoff wave number £, for the mth

TE mode is given as
on ™

k., = ﬂhl! m=1,2,3, ... (2-32)

The substitution of the above result for g,,(z) into formula (2-25) for x h followed by another
substitution into the TE field expressions (2-27) yields

Eym = wuok Sin(mh—ﬂz) e“jk“” ,m=1,23 .., (2-333.)
_ _ Jkmm Mrz\ - jkx _
H, =- 7 cos( ké) e ™ . m=1,223,.., (2-33b)
and
H,, =k* sin(m;lt‘) e ™ m=1,2,3, .., (2-33c¢)

where the wave number £ is given from formulas (2-8) and (2-32) as

\2
k2:kg—(i;l’—r) ,m=123, ... (2-34)

The cutoff frequencies for the TE modes are given by
fom= Az kem=T0, m=1,2,3, ... (2-35)

A comparison of formula (2-18) with (2-35) indicates that the cutoff frequencies of the TM,, and
TE,, modes are the same provided » = m. Therefore, the cutoff frequencies for the TE; and TE,
are the same as those of the TM; and TM, modes, respectively, given in table 2-1. Thus,
because the frequency range of interest here lies below 300 Hz, the TE modes are also of no

concern in this report.
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3. ELF PROPAGATION FORMULAS BASED ON THE
EARTH-FLATTENING APPROXIMATION

To reduce the mathematical complexities associated with the problem of the propagation of
radio waves over a spherical earth, Pryce (reference 11) introduced the earth-flattening
approximation in which the problem reduces to the propagation over a planar earth with an
atmosphere having a modified refractive index. In his investigation of the accuracy of the earth-
flattening approximation, Pekeris (reference 12) assumed that the range-dependence function can
be expanded in an asymptotic series involving increasing negative powers of the earth’s radius.
In Pekeris’ asymptotic series (for the range dependence), the first term corresponds to the model
of a flat earth and the succeeding terms are corrections for curvature. Koo and Katzin (reference
13) extended the work of Pryce and Pekeris to obtain exact differential equations for the
spherical geometry in terms of equations of planar earth type, resulting in solutions that are
applicable for arbitrary ranges and heights. Wait (reference 1) has applied the earth-flattening

approximation to obtain an approximate range dependence in the ELF band.

In this section, the earth-flattening approximation as applied to the range dependence of the
fields is presented. Bannister’s ELF propagation formulas, which incorporate the earth-
flattening approximation, are presented for VED and HED antennas located on the surface of the
earth. In addition, Wolkoff and Kraimer’s HED propagation formulas, which are modifications
of Bannister’s formulas to account for the anisotropic surface impedance in the vicinity of the
source, are also presented. For each set of formulas presented in this section, both the direct and
indirect great-circle path fields are given because both fields must be combined in order to
predict the propagation at antipodal ranges. In section 5 of this report, Bannister’s formulas are
compared with the spherical waveguide formulas to determine the maximum ranges of validity
of Bannister’s formulas.

3.1 EARTH-FLATTENING APPROXIMATION TO THE
LEGENDRE FUNCTION OF THE FIRST KIND

As shown in appendices F, G, and H, the range dependencies of the EM fields in the earth-

ionosphere waveguide are expressed in terms of the Legendre function of the first kind,
P (~cos 6), or one of its first two derivatives. From appendix J, the complex degree v of the

Legendre function is related to the wave number £ in the waveguide as

. _v+1/2
kEB—J(Z—VT’ (3-1)
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where 8= 27/A and « are the phase and attenuation constants, respectively, and A is the
wavelength. It should be mentioned that & corresponds to the quasi-TEM mode, the only
propagating mode in the spherical waveguide at ELF.

A mathematical development of the earth flattening approximation is given in appendix K.
From expression (K-33), the Legendre function is approximated as

P (- cos 6)
jsin v

« HO(kp) siff/Z/a , vl 1L lkpl» 1 (3-2)
where p = a0 is the great-circle path distance along the earth from the source point to the field
point and H(? denotes the Hankel function of the second kind with order 0. In the above
approximation, H ,‘P(kp) corresponds to the range dependence for a flat earth and the square-
root term is the correction for curvature. Expression (3-2) is sometimes referred to as the earth-
flattening approximation with curvature correction. It should be noted that expression (3-2)
differs by a factor of j with the one given by Wait (reference 1). The propagation formulas

presented in the remainder of this section each incorporate approximation (3-2).

3.2 BANNISTER’S FORMULAS

As mentioned in section 1, Bannister (reference 3) has derived ELF propagation formulas for
dipole sources that incorporate the earth-flattening approximation. These formulas are valid in
the quasi-near field range, which corresponds to measurement distances that are greater than an
earth wavelength. Although only Bannister’s formulas for VED and HED sources are presented

here, the field expressions for an HMD source can be readily obtained from the HED formulas
(reference 14) through replacement of the electric dipole moment p with jkm, where m is the

current moment (current-area product) of the HMD, and £, is the wave number in the earth. It
should be added that the equivalent HMD is oriented perpendicular to the HED, i.e., a y-directed
HMD is equivalent to an x-directed HED located on the surface of the earth, where the z
direction points radially outward from the earth’s surface.

It should be mentioned that Bannister’s formulas presented here have been slightly modified

in order to compute the phase as well as the magnitude of the field. The same formula
modifications were used by Wolkoff and Kraimer (references 4 and 5) in their HED formulas.

14



3.2.1 VED

Consider a VED located on the earth’s surface and oriented along the positive z direction in

the coordinate system defined in figure 3-1. Under the assumption of a scalar earth conductivity
0,, Bannister (reference 3) has derived propagation formulas that are valid at the earth’s surface

(z=0) for ranges greater than an earth’s wavelength (i.e., o> A,). These formulas are given as

. 1/2
E¢=2L Zz‘; 2 V0 €%+ E Gy (kp)? H(()Z)(kp)] 5;1%%5 | (330
pd= 1122 6 ) HOGp) _pla "
P dp TR sin(p/ay| > (3-3b)
and
1112 6.0 B | 212
vT 4p TR sin(p/a)| - (3-3¢)
where
Gyu) = 27” coth(u) + (1 - %) u2csch®(u) > (34
V(1) = 13 coth(?) csch () » (3-5)
and

p =1dl (electric dipole moment),

k. = —-C“l = -2;%‘- (wave number in free space),

o

k= —“‘,l — ja (wave number in the earth-ionosphere waveguide),

S= kL =£-j kﬁ (normalized wave number),
0 [
n,= IO (intrinsic impedance of the earth)
e o, + jwe, P '
=T
“=72n -
and
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The superscript 4 in the field components refers to the direct great-circle path contribution. In

the above formulas, I denotes the antenna current, dl is the effective length of the antenna, a is
the radius of the earth, 4, is the wavelength in free space, &, is the permittivity of the earth, v is

the speed of propagation in the earth-ionosphere waveguide, ¢ is the attenuation constant in
Np/m, h is the ionospheric reflection height, and p = a@is the direct great-circle path distance
from the source to the field point. Note that a time-harmonic dependence of /%" is assumed in
expressions (3-3), where w = 27f is the angular frequency (rad/s), and fis the frequency in Hertz.

The functions G, and V,, were included by Bannister to extend the range of the previous ELF
formulas down to the quasi-nearfield range (i.e., 0 > 4, and p « 4,). Therefore, for an earth
conductivity o, = 2 x 10 S/m and frequency f= 76 Hz, Bannister’s formulas are valid for ranges
greater than 30 km from the source. Bannister has noted that for u < 0.5, G Ry =13 fort<0.5,
G,(D=V, (D) =1;foru>25, Gy(u) = %t—“ = % ;forz>4.5, V(1) 0. Note that the spherical
earth spreading (curvature) factor [(P/ a) / sin (p/ a)] 12 appears in each VED field component

expression.
A
GREAT-CIRCLE ® 5
PATH
Figure 3-1. Coordinate System Used by Bannister (Reference 3)
(The VED and HED sources are each located at the origin with the VED oriented
along the positive z-direction and the HED along the positive x-direction.)
16
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The VED field expressions given above are associated With the fields that propagate along
the direct great-circle path that connects the source and field points (figure 3-2). At antipodal
ranges, the contribution from the indirect great-circle path field must be included in order to
account for the interference produced by the two paths. The indirect great-circle path field
components for the VED can be obtained from the direct great-circle path fields in equations
(3-3) through replacement of the range p with the indirect great-circle path range p, = 27a - p
(figure 3-2) and with the inclusion of the appropriate phase shift as obtained from table J-1 in
appendix J. As explained in appendix J, this added phase shift of +; depends on the primary
range dependence of the field and therefore varies with each field component. Therefore, the

indirect great-circle path VED fields are given as follows:

172

iz _ Mol —ap 4+ & 2 17(2) p;la
E = 2k p3 [Vh(ti) e~ i+ j5 Gyuy) (kp)” H(kp) moia| (3-63)
12
E,= gy Ou HPk0) | 20T (3-6b)
P 4p, Tk sin (p/ a) ’
and
172
Hy == 35, Gawd HPko) | 070 (3-60)
¢ Ap Tt sin (p/ ay|
where u; = Z’;‘ and 1, = 22’ o The superscript i in the field components refers to the indirect

great-circle path contribution. For each component, the total field is obtained through addition of
the direct and indirect great-circle path contributions, i.e.,

E,=E{+E}, (3-7a)

E,=E4+E., (3-7b)
and

H¢=Hg+Hg, ) (3-7c)
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T FIELD POINT

DIPOLE SOURCE \\

e i< 2aa
P4 hnta

ANTIPODE

Figure 3-2. The Earth and the Two Great-Circle Paths to the Field Point

3.2.2 Horizontal Electric Dipole

Consider a HED located on the earth’s surface and oriented along the positive x direction of
the coordinate system defined in figure 3-1. Under the same assumptions given for the VED, the

HED propagation formulas are given as follows:

; 12
d_ kP @) pla —
Ef= dp G,(u) H1 (kp) Sniola ) cos @ , (3-8a)
12
n2k*pG (1) 1 pla
El= ¢ " " \H®(kp) — -+ HO(kp) || ——— k -
p 4(1)M0p 0 ( P) kp 1 ( P) sin (p/a) Cos @ (3 8b)
1372
2kpH (1 / -
Ei=- BPHAD proygy | _LL T g, (3-8¢)
4op,p 1 sin (p/ a)
i 132
kpH (1 / )
pe=- DEPID oy | P19 |G g (3-84)
p 4ou, p 1 sin (p/ a)
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and
12

la
P cos @ | (3-8¢)

pd - & PG
sin (p/ a)

H(ko) - L Ok
p dopp o kp) ko 1 (kp)

where

Hh(t) = Gk(l) + Vh(t) ) (3-9)

k 2
Bannister has noted that for £ > 2.5, G (1) = %—t = % (?0) and fort>4.5, V,(t)= 0 and

H,(t) = G(1) = % = % (7}2 2. Note that the spherical earth spreading factor [(p/a) / sin (p/a)]ll2
appears in each HED field component expression along with an additional factor of

[(p/a) / sin (p/a)] appearing in the Eg and H g formulas. This factor of [(p/a) / sin (p/a)] also
appears in the corresponding HED spherical waveguide formulas derived in the appendix H. Note
that the surface electric field components £ g and E ﬁ:) are related to the surface magnetic field

components H f; and H ,‘f , respectively, through the impedance of the earth 7,.

As previously mentioned, at antipodal ranges, the contribution from the indirect great-circle
path field must be included in order to predict the interference produced by the two paths. The
indirect great-circle path field components for the HED can be obtained from the direct great-
circle path fields in equations (3-8) through replacement of the range p with the indirect great-
circle path range p; and with the inclusion of the appropriate phase shift as obtained from table
J-1in appendix J. As mentioned earlier in this section, the added phase shift of +; depends on
the primary range dependence of the field and therefore varies with each field component. Thus,
the indirect great-circle path HED fields are given as follows:

12
. —nkpG(u) p;/a
Ei= #ng)(kpi) m cos @ , ‘ (3-10a)
12
G ) I pila
Ei=21le CAHD(kp) - HO(kp )| | —— , 3-10b
P 4ou,p; o kP kp; 1 keo sin (p / a) s e ( )
312
. jnZkpH (1) p.la :
Fi=2le ™ v g@ikp) | ——t—oou , 3-10
= doppr 1P Sl "7 -
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32
,_Jnkp pi'a ;
Hi=21" Lo YHO(kp ) | , 3-10d
o= dop, p1 TV ITER G GTg | e G-109
and
_ 12
&P g 1 pi/a
Hi=_— L GV H® k) - HO(kp) || | ¢ , 3-10e
@ dwp, Pi 1) 0 (kpy) kp, ! (kp) sin (p/ a) o ¢ )

where p;, u;, and ¢; were previously defined for the VED. For each field component, the total

field is obtained through addition of the direct and indirect great-circle path contributions as is
shown for the VED fields in expressions (3-7).

3.3 FORMULAS FOR A HED ABOVE AN ANISOTROPIC GROUND

To account for the anisotropic earth conductivity beneath a HED antenna, Wolkoff and
Kraimer (references 4 and 5) have extended Bannister’s formulas (3-8). Wolkoff and Kraimer’s
formulas have been formally derived by Casey (reference 6). The coordinate system used by

Wolkoff and Kraimer to describe the EM field radiated by a HED at a given point on the surface
of the earth is described in figure 3-3. In this illustration, E; and N, refer to the geometric (or

true) east and north directions, respectively, at the transmitter location, while E, and N, refer to

the geometric east and north directions, respectively, at the receiver location (or field point).
Note that the geometric east and north directions vary as functions of location along the earth’s
surface and lie on the tangent plane to the spherical earth. In addition, £ and N correspond to the
x and y directions, respectively, in the local rectangular coordinate system at each point on the
spherical earth, and the vertical direction z points radially outward from the center of the earth at

each point as illustrated in figure 3-4.

In figure 3-3, the range p is the direct great-circle path distance from the HED center to the

field point, ¢ is the azimuthal angle measured counterclockwise from true east at the transmitter,
and ¢, is the azimuthal angle measured clockwise from true north at the transmitter. The unit

vectors (P, ¢, 2) form a right-handed cylindrical coordinate system in which £ is directed
radially outward from the center of the earth. This cylindrical coordinate system differs from the
convention used by Bannister and others (compare with figure 3-1), who define the azimuthal
angle ¢ to be measured counterclockwise with respect to the electrical axis of the HED. Wolkoff
and Kraimer (references 4 and 5) use the revised coordinate system described here because their
antenna pattern factors are determined from magnetic field measurements that are referenced

with respect to the local north and east directions.
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GREAT-CIRCLE
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Figure 3-3. Coordinate Systems at the Transmitter and Receiver Locations
Used by Wolkoff and Kraimer (References 4 and 5)
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Figure 3-4. Local Rectangular Coordinate System (E, N, 7) at a
Given Point on a Spherical Earth
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Wolkoff and Kraimer’s propagation formulas for the direct wave fields from a HED are
given as follows:

. 1/2
JkIG ,(u) pla ,
E:’ = —47;'——— H§2)(kp) W [Te sin g, —T, cos (pn] , (3-11a)
kI H (1) pla 7
Hg = WH{Z)( ) Tl [Te cos ¢, + T, sin (pn], (3-11b)
O
and
KIGD [ : pra |
H;’p = Tuhp HP(kp) -Elf_) H®(kp) ey [Te sing, - T,cos ¢,|. (3-11c)
0

In the above formulas, T, and T, denote the antenna pattern factors in the east and north

directions, respectively. These complex-valued quantities account for the antenna length as well
as the anisotropic ground conductivity beneath the antenna. For a given HED, T, and T, are

determined through measurement of the surface magnetic field at a location lying in the near
field of the antenna (reference 4). It should be noted that in the above formulas, 7, and 7,, have

been interchanged from their original definitions given in reference 6. A detailed discussion of

the antenna pattern factors is given in a technical report that is still in preparation (reference 15).

Wolkoff and Kraimer’s propagation formulas for the indirect-wave fields from a HED are

obtained from the direct great-circle path fields in equations (3-11) through replacement of the
range p with the indirect great-circle path range p; and with the inclusion of the appropriate
phase shift of +; for each field component as obtained from table J-1 in appendix J. Thus,

Wolkoff and Kraimer’s HED indirect wave formulas are given as follows:

172

. kIG,(u) p;la .

E; = —# ng)(kpl) m {Te Sin (Pn - T" CcOS ({)n] . (3-123)

JKIH (1) p.la |'?

o Aot . ‘

H, =- m—z'— HP(kp) m [TC cos @, + T, sin q)"] , (3-12b)

ori
and
pt = 2160 | Okpy - L HOEpy | [-LL2 N T,si T (3-12¢)
= " pP)— P _— [ s, — Cos @ |,0~

@ 4(0,11091- 0 1 kpl 1 i sin (p / a) e n n n
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where p; is defined in figure 3-2 and u; and ¢, are defined in section 3.2.1. For each field

component, the total field is obtained through addition of the direct and indirect great-circle path
contributions as is shown for the VED fields in expressions (3-7).

A comparison of Wolkoff and Kraimer’s HED formulas (3-11) with Bannister’s formulas
(3-8) yields the conversions in table 3-1.

Table 3-1. Conversion Table Relating Bannister’s HED Propagation
Formulas with Those of Wolkoff and Kraimer

Field Component | Bannister Wolkoff and Kraimer

E,H, -Nedlcos@ | T,sing@,— T, cos @,

H, -n,dlsin ¢ T,cos ¢, + T, sin ¢,

To convert from one of Bannister’s HED formulas to the corresponding Wolkoff and Kraimer
formula, the quantity in the second column of table 3-1 is replaced by the corresponding quantity
given in the third column. Table 3-1 is a revision of a similar table originally presented by Casey
(reference 7). A comparison of columns two and three above shows that the antenna length d/ in
Bannister’s formulas is absorbed into the antenna pattern factors.

Numerical results based on Wolkoff and Kraimer’s HED formulas will not be presented in

this report. For results based on these formulas, the reader is referred to a forthcoming report
(reference 15).

23 (24 blank)




S S TN T T T T I -

4. SPHERICAL WAVEGUIDE PROPAGATION FORMULAS

ELF propagation formulas for VED and HED sources that radiate in a spherical earth-
ionosphere waveguide have been derived in appendices F and H, respectively. These spherical
waveguide formulas are based on the assumptions of a uniform isotropic earth and a uniform
isotropic ionosphere of constant height, where the waveguide boundaries are represented by
scalar surface impedances. Through use of the thin-shell approximation derived in appendix I, it
is shown that only the quasi-TEM mode can propagate in the 30-Hz to 300-Hz frequency band.
In this section, the quasi-TEM spherical waveguide formulas for VED and HED sources are
presented, where the source and observation points are located on the surface of the earth. From
the series approximation of the Legendre function of the first kind (see appendix J, section J.2), it
is shown that the HED spherical waveguide formulas reduce to expressions that are closely
related to the antipode-centered formulas that were previously derived (reference 7) for antipodal
ranges. In addition, through use of the earth-flattening approximation derived in appendix K, it
is shown that the spherical waveguide formulas reduce to Bannister’s formulas given in section
3.2. Finally, through use of table 3-1, spherical waveguide formulas for a HED above an
anisotropic ground are presented.

4.1 PROPAGATION PARAMETERS FOR TM AND TE MODES AT ELF

The radial wave numbers for the quasi-TEM, TM, and TE modes in the spherical earth-
ionosphere waveguide at ELF are derived in appendix I. These formulas are based on the thin-
shell approximation that has been shown (reference 2) to be suitable in the ELF band. The radial
wave number k,, has been defined in terms of the free-space wave number &, and the wave

number % in the direction of propagation as

172

k= (k2-K?) (41)

From appendix I, approximate formulas for the radial wave number k,, for the quasi-TEM

mode and the radial wave numbers k,, for the TM modes are given as

n

Ak J|«1, 4-2)

b

172
(A8+A9k1

Kre, = 04D | =

Agl«‘Ae

and
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(A +A DK
ni g =0
krvnE n T ni ’

Aekoh} «1l;n=1,2,3, ... (4-3)

Similarly, approximate formulas for the radial wave numbers k , for the TE modes are given by

m

; -1
Jj(4,+A4,)

k ~ B
k

T h

-m=1,2,3,.... 4-4)

In the above approximations, it is assumed that the spherical waveguide boundaries appear as
nearly perfect conductors. Therefore, in formulas (4-2) and (4-3), |4, |« 1 and |4, [« 1, where 4,
denotes the normalized surface impedance of the earth and A,denotes the normalized surface
impedance of the ionosphere for the quasi-TEM and TM modes. Similarly, in formula (4-4),

|44 | «1and |4 | « 1, where A, denotes the normalized surface impedance of the ionosphere for
the TE modes.

For a given mode, the wave number £ in the direction of propagation is given from formula

(4-1) as
. 172
k=p-jo=(k3-k2,)"", @-5)

where = 27/A and « are the phase and attenuation constants, respectively, and A is the
wavelength. In the above formula, note that the radial wave number £,,, corresponds to a
particular mode and is given by one of the approximations (4-2), (4-3), or (4-4). A subscript or
superscript has not been included with k because only quasi-TEM mode propagation formulas
are referred to in the remainder of section 4. In the ELF propagation literature, the mode
propagation parameters are given by c¢/v, ¢, and k, where c is the speed of light in free space,

v is the phase velocity of the mode, and 4 is the ionospheric reflection height. The mode

parameter c/v is expressed in terms of the wave number k as

caRel L @-6)

Tables 4-1a and 4-1b provide a listing of the phase velocity ratio (¢/v) and attenuation «,
respectively, for equally spaced frequencies across the 30-Hz to 300-Hz frequency band under
daytime propagation conditions with # = 50 km, earth conductivity o, = 103 S/m, and
ionospheric conductivity ; = 10> S/m. These tables are based on the thin-shell approximation
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and are computed from formulas (4-2) to (4-6). Note that the attenuation, expressed in decibels
per megameter (dB/Mm), can be obtained from o/(Np/m) through the relation 1 Np = 20 log;y(e)

dB = 8.686 dB.

Table 4-1a. Phase Velocity Ratio c/v for the Dominant Modes in a Spherical

Earth-Ionosphere Waveguide at ELF Frequencies Under Daytime
Conditions with h = 50 km, 6, =107 S/m, and 6;= 10 S/m

F“(%‘ze)“cy Quasi-TEM |  TM, ™, TE, TE,
30 1.157 3.199x 103 1.599 x 103 17.33 34.65
60 1112 | 4524x103 | 2262x103 | 7268 | 14.53
90 1.092 5542x103 | 2.770x 103 4.280 8.556
120 1.079 6.402x 103 | 3.199x 1073 2.916 5.827
150 1.071 7.161x 103 | 3.577x1073 2.157 4.308
180 1.065 7.849x 103 | 3.919x 1073 1.682 3.358
210 1.060 8.483x103 | 4.234x 103 1.361 2.716
240 1.056 9.075x 103 | 4.527x1073 1.132 2.258
270 1.053 9.635x 103 4.803 x 1073 0.9621 1.917
300 1.050 1.017x 102 | 5.064x 103 | 0.8313 1.655

Table 4-1b shows that the quasi-TEM mode is the only propagating mode in the ELF band
with an attenuation rate of approximately 0.75 dB/Mm at 30 Hz that increases with frequency to
2.63 dB/Mm at 300 Hz. Table 4-1b also shows that the attenuation rates of the TM and TE
modes are too high to be of any practical concern across the 30-Hz to 300-Hz frequency band.
Note that the attenuation increases with the order of the mode. In addition, the attenuation rates
of the TE; and TE, modes are less than those of the TM; and TM, modes, respectively. Table
4-1a indicates that the phase velocity of the quasi-TEM mode monotonically increases with
frequency over the 30-Hz to 300-Hz band.
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Table 4-1b. Attenuation o in dB/Mm for the Dominant Modes in a Spherical
Earth-Ionosphere Waveguide at ELF Frequencies Under Daytime
Conditions with h = 50 km, 6, =107 S/m, and 6;= 10~ S/m

Fre(‘};’ze)“cy Quasi-TEM ™, ™, TE, TE,
30 0.7543 545.7 1091 390.6 781.3
60 1.110 545.6 1091 430.4 861.0
90 1.385 545.4 1091 449.5 899.5
120 1.617 545.2 1091 461.3 923.3
150 1.822 544.9 1091 469.4 939.9
180 2.007 544.5 1091 4753 952.3
210 2.178 544.1 1091 479.8 961.9
240 2.337 543.6 1090 483.4 969.7
270 2.486 543.1 1090 486.2 976.1
300 2.628 542.5 1090 488.5 981.5

Tables 4-2a and 4-2b list the phase velocity ratio and attenuation rate, respectively, for
equally spaced frequencies across the 30-Hz to 300-Hz ELF band under nighttime propagation
conditions with 2 = 75 km, Og = 10-3 S/m, and o; = 103 S/m. The numbers in these tables are
also based on the thin-shell approximation. Table 4-2b shows that the quasi-TEM mode is the
only propagating mode in the ELF band at nighttime with an attenuation rate of approximately
0.53 dB/Mm at 30 Hz that monotonically increases with frequency to 1.78 dB/Mm at 300 Hz .
Note that the attenuation rates of the TM and TE modes are again too high to be of any practical
concern. Table 4-2a indicates that the phase velocity of the quasi-TEM mode monotonically
increases with frequency over the tabulated frequency band.
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A comparison of tables 4-1 with tables 4-2 shows that the mode attenuation rates are less
at nighttime. In addition, the phase velocity of the quasi-TEM mode is greater at nighttime.
Because the quasi-TEM mode is the only propagating mode in the 30-Hz to 300-Hz band, the
remainder of this report will focus on the quasi-TEM mode.

Table 4-2a. Phase Velocity Ratio c/v for the Dominant Modes in a Spherical
Earth-Ionosphere Waveguide at ELF Frequencies Under Nighttime

Conditions with h =75 km, 0, =1 073 S/m, and ;=10 S/m

Frequency

(Hz) Quasi-TEM ™, ™, TE, TE,
30 1.106 3.199x 103 | 1.599x 103 9.360 18.72
60 1.075 4525x%103 | 2.262x103 3.729 7.455
90 1.061 5.546x 103 | 2.771x 1073 2.143 4.283
120 1.053 6.409x 103 | 3.200x 103 1.439 2.873
150 1.048 7.172x 103 | 3.579x 103 1.054 2.103
180 1.043 7.867x 103 | 3.921x10-3 0.8163 1.627
210 1.040 8.510x 103 | 4.237x1073 0.6572 1.308
240 1.038 9.113x 103 | 4.532x103 0.5445 1.082
270 1.035 9.685x 103 | 4.809x 1073 0.4612 0.9151
300 1.037 1.023x 102 | 5.072x1073 0.3976 0.7875

29




Table 4-2b. Attenuation o in dB/Mm for the Dominant Modes in a Spherical
Earth-Ionosphere Waveguide at ELF Frequencies Under Nighttime

Conditions with h = 75 km, 6, = 10 S/m, and ;= 10" S/m

Frequency

(Hz) Quasi-TEM ™, ™, TE, TE,
30 0.5263 363.8 727.6 290.9 581.9
60 0.7655 363.6 727.6 310.7 621.6
90 0.9496 363.4 727.4 319.7 640.0
120 1.105 363.0 727.3 325.1 651.2
150 1.242 362.6 727.1 328.6 658.8
180 1.366 362.1 726.8 331.0 664.4
210 1.480 361.5 726.5 332.7 668.6
240 1.586 360.8 726.2 333.9 672.0
270 1.686 360.0 725.8 334.6 674.7
300 1.780 359.2 7253 335.1 676.8

4.2 QUASI-TEM FIELDS

4.2.1 VED

The spherical waveguide propagation formulas for a VED located at an arbitrary height

above the surface of the earth are derived in appendix F. These formulas simplify considerably

for the case when both the source and observation points are located on the surface of the earth.

Under this assumption, from appendix F, section F.2, the quasi-TEM fields for a VED are given

as follows:

e JNP Vv, +1)

P,(-cos 0) ,

1 9 .
— P‘,o(— cos 0) ,

T 7 4k ha?  sinvm
ve__ TlopAg
0~ 4ha sinv,m 90
and
He=_f __1 -f)—P (- cos 6)
¢~ 4ha sin v, 30" v ’
30

(4-7a)

(4-7b)

(4-7¢)



The reader is referred to the spherical coordinate system (r, 8, ¢) described in figure 1-1 with
unit vectors (f‘,é,@) illustrated in figure 4-1. In these formulas, the VED is located at (r, 8) = (a,
0) and the observation point is at (r, 8, @) = (a, 6, ¢). Note that because of azimuthal symmetry,
the above formulas are independent of ¢. In addition, the excitation factor Ag has been replaced
by 0.5, a suitable approximation at ELF, as is shown in appendix I, section 1.2. In the above
formulas, 4, denotes the normalized surface impedance of the earth and P,,a is the Legendre
function of the first kind of degree v, and order zero, where v, is the n = 0 solution of the TM-
mode characteristic equation.

->
>

>

Figure 4-1. Spherical Coordinate System

From appendix J, section J.1, v, is related to the quasi-TEM wave number & as

v +1/2
= 2 a (4"8)
As discussed in appendix K, if | v, | » 1, then
v,+ 12 = [vo(vo + 1)]1/2 . (4-9)

The above result is generally valid in the ELF band. Therefore, under this condition, the wave
number k can be approximated as
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[vo(vo + 1)] 12
peboe ) (4-10)

For a homogeneous and isotropic earth, the normalized surface impedance 4, 1s given by
(4-11)

where the intrinsic impedance of the earth 7, is given in section 3.2.1.

4.2.2 Horizontal Electric Dipole

The spherical waveguide propagation formulas for a HED located at an arbitrary height
above the surface of the earth are derived in appendix H. As with the VED formulas, the HED
formulas simplify considerably for the case when both the source and observation points are
located on the surface of the earth. Under this assumption, from appendix H, section H.2, the
quasi-TEM fields for a HED are given as follows:

A
he _ _ 770 gp 1 _—a_ _
B = "Zha v sgfvlocos®) cos e, (4-122)
& A2 .
he J ono gp 1 1 d
= - P 0 .
E, 4h v (v,+1) sinv n 902 Vo( cos 6) cos @, (4-12b)
i 2
he _ JOHAP 4 K. .
¢ TAh yv,e D) smv,sng 9 w0 ne, @-12c)
ik A
he JKo gp 1 1 1 3 .
= 9 _ 0 .
0 ="ah v (v,+1) smv,msng 99 w780 s, (4-12d)
and
ik A 5
he Ko gp 1 1 9
) P -oos : 4-12
@ 4h v,(v,+1) sinv 502 vo( cos ) cos @ (4-12¢)

The reader is again referred to the spherical coordinate system (r, 8, ¢) described in figure 1-1.
In these formulas, the HED is located at (r, ) = (a,0) and the observation point is at (r, 8, @) =
(a, 8, 9). Note that the above formulas have the same azimuthal dependencies as Bannister’s
HED formulas that are listed in section 3.2.2. As in the VED case, the excitation factor Af, has
been approximated by 0.5. The complex degree v, in the above HED formulas corresponds to

the n = 0 solution of the TM-mode characteristic equation.
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4.3 ANTIPODE-CENTERED FORMULAS

In order to predict the EM fields produced by a HED at antipodal ranges, the author
(reference 7) derived some simple approximate formulas that are based on an earth-flattening
type of approximation that has the proper range dependence in the vicinity of the antipode and
accounts for spherical curvature at further distances from the antipode. The resulting “antipode-
centered” formulas have range dependencies that are similar in form to the corresponding ones
that incorporate the earth-flattening approximation except that the Hankel function is replaced by
a Bessel function of the first kind and the range argument is replaced by p,, where p, = a (% - 8)
is the great-circle path distance from the antipode to the field point (figure 3-2). The range

dependencies in the antipode-centered formulas are derived from an approximate series
representation of P, (- cos 0) that is suitable in the vicinity of the antipode (6= ). From the

primary terms in this series, approximate formulas for P (- cos 6) and its first two derivatives

with respect to @ are derived in appendix J, section J.2. These formulas are given as follows:

1/2
P,(~cos 6) = J(kp,) sir? ‘;ﬁ Z —| (4-13a)
p o 12
30 P (—cos 0) =ka J (kp ) o “pa/a , (4-13b)
and
P o /a 12
53 Pu=cos ) =— (k)2 | T o(kp,) - k;)a J,kp,) m (4-13¢)

Through use of the above approximations, antipode-centered formulas for both VED and HED
sources are derived from the spherical waveguide formulas presented in section 4.2. The resulting

HED formulas are then compared with the corresponding formulas derived in reference 7.

4.3.1 VED

The application of the approximate formulas (4-13) and (I-7) to the spherical waveguide
formulas for a VED source given in expressions (4-7) yields the following field approximations:

12
, (4-14a)

nkip 1

p la
4k )b sinv,m Tolkpy)

ve
E’= -
sin p /a
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12
ve nokpAg 1 pa/a
Eo == v, 1(kpg) sin p /a (4-14b)
and
' p la 12
ve _ KD 1 a -
Hy =70 s v, J1(kpg) sin p Ja ’ (4-14c)

where p, = a (7 - 0) is the great-circle path distance from the antipode to the field point (figure
3-2). Inthe above formulas, note that sin 8= sin (p/a) =sin (p,/a) and p + p, = ma.

4.3.2 Horizontal Electric Dipole

The application of the approximate formulas (4-13) and (I-7) to the spherical waveguide

formulas for a HED source given in expressions (4-12) results in the following field

approximations:
12
he _ MKALP P
E e v, T 1kpg) sin p Ja o8y (4-132)
. 2 1/2
e JomAip 1 pa
= Jolkp ) ———J (k ¢ , 4-15b
0 4h sin v, okP,) kp, 1(kpg) sin p /a cose ( )
. 2 312
he o JORAD ) 0.) P sin @ (4-15¢)
¢ 4khp, sinv,m U % |sinpa ’
ik _A a PP?
e _JIXo 8p 1 pqa :
= , 4-15d
O 4khp, sinvm ! P’ | Sin pa e ( )
and
ik A / 1/2
he __MoTeP 1 1 P4
= Jokp y———J (k . 4-15
¢ 4h  sinvn okP,) kp, 1(kpg) sin p/a cose (4-15¢)

A comparison of expressions (4-15a), (4-15d), and (4-15¢) with the corresponding formulas

given in reference 7 shows that the above formulas differ by a factor C that is defined as
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B eJkma —:Z. AL
~ 2sinv 2 sinv,m

(4-16)

Note that the final expression in formula (4-16) was obtained through use of equation (4-8).

Table 4-3 lists the magnitude and phase of C for several frequencies in the ELF band. The
magnitude of C is tabulated to three significant figures while the phase of C is given to the
nearest thousandth of a degree. Because the antipode-centered propagation formulas in reference
7 were derived via Bannister’s HED formulas and because there is a sign difference between
Bannister’s HED formulas and the spherical waveguide formulas (see section 4.4), C has been
multiplied by —1 in table 4-3. The results show that C is very small in magnitude and phase over
the ELF band, indicating that the HED antipode-centered propagation formulas of reference 7 are
sufficiently accurate to be used in place of expressions (4-15a), (4-15d), and (4-15¢).

Table 4-3. Magnitude and Phase of Difference Factor C in HED Antipode-Centered ELF
Propagation Formulas at Several Frequencies under Daytime Conditions

Frequency (Hz) Vo | C | (dB) Phase{-C} (deg) |
30 4.75 - j 0.440 -2.56 x 102 3.599
76 11.7 -7 0.880 -1.52x 102 0.204
100 15.9-51.32 1.92x 103 0.007
300 464 -5 3.67 -5.73x 1010 0.000

The suitability of the antipode-centered ELF propagation listed in formulas (4-14) and (4-15)
depends entirely on the accuracy of the approximations for P, (- cos 6) and its first two

derivatives with respect to 8 as given in expressions (4-13). Comparison plots of the exact series
formulas for P (- cos 6) (and its first two derivatives with respect to 8) and the approximate
formulas (4-13) are given in appendix J, section J.3, for frequencies of 30 Hz and 76 Hz. The
plots show that the approximate formulas are in close agreement with the corresponding exact
formulas. This comparison improves with increasing frequency and degrades with increasing
derivative order. (For more details regarding this comparison, refer to appendix J, section J.3.)
In summary, the antipode-centered propagation formulas (4-14) and (4-15) are suitable
substitutes for the spherical waveguide formulas presented in section 4.2.
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44 REDUCTION TO BANNISTER’S FORMULAS VIA
THE EARTH-FLATTENING APPROXIMATION

The earth-flattening approximation to the Legendre function of the first kind is derived in
appendix K. Earlier in this report, it was mentioned that this approximation has been incorporated
into Bannister’s VED and HED formulas given in section 3.2. Through use of the earth-flattening
approximation, it is shown that the VED and HED spherical waveguide formulas can reduce to

Bannister’s formulas.

4.4.1 VED

From expression (K-33) in appendix K, the Legendre function of the first kind and degree v
is approximated as

pla 12

P,(-cos 6) = jsin v H)(kp) | 7o

, 4-17)

where p = a0 is the great-circle path distance along the earth from the source point to the field
point (figure 3-1) and H 52) denotes the Hankel function of the second kind with order 0. As
discussed in section 3.1, H (()2)(kp) corresponds to the range dependence for a flat earth and the

square-root term is the correction for curvature. The spherical waveguide propagation formulas
for a VED are given in expressions (4-7). In these formulas, the range dependencies are
expressed in terms of either P (- cos 0) or its first derivative. From the approximation (4-17),
the derivative of P, (- cos 0) with respect to 8 is given by

12
d oo pla
50 P, (- cos 0) = —jka sin v 7 H{®(kp) m (4-18)
where the 6-derivative of H?(kp) is given by
0 ,
=g HE?(kp) = ka HE' (kp) = - ka HP(kp) - (4-19)

In the approximation (4-18), note that the 8 derivative was applied only to the Hankel function

term because it varies more rapidly than the curvature correction term.

The substitution of the approximations (4-10), (4-17) and (4-18) along with expression
(4-11) into the VED formulas (4-7) yields

36



I T I I AT T I T BN TE T T - - - - ., -

1/2

n kp pla
E¥=—-—% ~ HP(kp)| ——— 4-20
? 4k h 0 ke) sin(p/a)| ’ (4-202)
12
L sin (p/a)
and
Jkp ola 12
H” =~ L2 H@(kp) | L= — 4-20
¢ kp) sin (p/ a) (4-20c)

In the above formulas, note that the spherical components r and 8 have been replaced by the
equivalent cylindrical components z and p, respectively. The above formulas are generally valid
for ranges greater than three ionospheric reflection heights, i.e., p > 34. In order to show that the
above VED formulas are equivalent to those of Bannister given in section 3.2.1, the functions G,
and ¥, must be replaced by their approximate forms. For p > 34, these functions can be
approximated as

Gym=3t=", (4-21)
and

V,(0)=0. 4-22)

The substitutions of the above approximations into Bannister’s VED formulas (3-3) yields

pla 1FP oy | Pl - (4-23a)
z Ak 0 sin(p/a)| ’
[ la 11/2
El= J’Zf: L HO(kp) Sinp(m , (4-23b)
and —
H g—l-’-‘EH@)(k y|—Pla " (4-23¢)
¢ 4h sin (p/ a)

A comparison of formulas (4-20) with (4-23) shows that the VED spherical waveguide formulas
reduce to Bannister’s formulas for p > 34.
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4.4.2 Horizontal Electric Dipole

The spherical waveguide propagation formulas for a HED are given in expressions (4-12). In
these formulas, the range dependencies are expressed in terms of either the first or second
derivatives of P,(- cos 8). An approximation for the first derivative of P,(- cos 8) with respect to
@is given in formula (4-18). From this approximation, the second derivative of P (- cos ) is

given as
12

92 9 pla

= (2) L
302 P, ( cos ) = — jkasin v m—= 20 H*/(kp) sn(p/a)

12
= — jka)* sinv g |H (2)(kp) H (2)( P) _pla (4-24)
sin (p / a)

In the above approximation, note that the @ derivative was only applied to the Hankel function
term because it varies more rapidly than the curvature correction term.

The substitution of the approximations (4-10), (4-17), (4-18), and (4-24), along with
expression (4-11), into the HED formulas (4-12) yields
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he j’?ekp ) P/ a -
E; = H"(kp) sn(p/ ) cos @, (4-25a)
e . konzp 1 pla |
E'e—_ 07 I gk H(z) _ S, 4-25b
P 4n h [ (kp) = kp (kp) sin (p/ a) cos ( )
312
k nZp pla |~ .
EheE o'le 2k , 4-25
¢ 4n khp 2 sin (p/ a) e (4-25¢)
kn.p ra P?
HheE o'le H(2)k p 1 , 4-25d
P dm khp ! (kp) sin (p/ a) e ( )
and
kn.p pla 12
HI « =222\ H O kp) — L HOWkp) || —F—— : 4-25¢
© dnh (kp) - kp (kp) sin (p/a)} oS ( )
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In the above formulas, note that the spherical components » and 8 have again been replaced by
the equivalent cylindrical components z and p, respectively. The above formulas are generally

valid for p > 3A. In order to show that the above HED formulas are equivalent to those of
Bannister given in section 3.2.2, the functions G, V},, and H, must be replaced by their

approximate forms. Approximations for G,(«) and V) (¢) are given in expressions (4-21) and (4-
22), respectively. For p > 3h, G,(?) and H,(t) can be approximated as follows:

p (ko)
Gy (1) = 2 =5 (7) s (4-26)
and

k 2
Hyn=G,n=% (70) . (4-27)

The substitutions of the approximations (4-21), (4-26), and (4-27) into Bannister’s HED
formulas (3-8) yields

mekp v
Ed HO(k 4-2
b4 ( ) sin (p/ ) cos @, ( 8a)
k,n2p 1 pla |
Ede-0-€" H @)k H @k —_— , 4-28b
o= an p |0 *P)= O Snpra| 7 (4-280)
N, kp
312
knm2p .
Flo__0lel” (2) - - , 4-28
¢ 4n khp (ko) sin (p/ a) e (4-28¢)
knp 312
HdE— ole (2) : -
P 4n khp (ko) sin (p / a) e (4-28d)
and
k,n.p pla |
Hi=-—2"e" | HOkp) — L HO(kp) || —L—— : 4-28¢
p an (kp) - ko (kp) sin (p/ @) Cos @ ( )

A comparison of formulas (4-25) with (4-28) indicates that each of the HED spherical waveguide
formulas reduces to within a factor of —1 of Bannister’s formulas for p > 3h. At this time, there

is no explanation for the sign difference.
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4.5 MODIFICATION OF HED SPHERICAL WAVEGUIDE FORMULAS
TO ACCOUNT FOR AN ANISOTROPIC GROUND

The HED spherical waveguide formulas (4-12) are based on the assumption of a
homogeneous, isotropic earth. These formulas can be modified to account for an anisotropic-
ground conductivity in the vicinity of the HED through use of the reciprocity theorem. The
derivations of the modified HED spherical waveguide formulas follow that given by the author

(reference 6) for Bannister’s HED formulas and will not be presented here. In addition, the
conversion (table 3-1) may be applied to the spherical waveguide formulas if E, and H,, are

replaced by E, and Hy, respectively. Therefore, the modified HED spherical waveguide

formulas are

1 )

he _ 1 1 o 3 ) _ ]
E== ha Sov vr 0 P‘,O( cos 0) |T,sin @, T, cos (p"] , (4-29a)

he _ jkol 1 1 1 j)_ ' )
Hy =- A v (v, +1) sinvxsin 6 8 on(— cos 6) [Te cos @, + T, sin (pn] , (4-29b)

and
he _ jkOI ]. l (')2 4 ]
¢ =T v (v, + D) sinvy 962 0 |7esing,~T,cos 9| . @-290)

In the above formulas, 7, and 7,, are the antenna pattern factors in the east and north directions,

respectively, and ¢, is defined in figure 3-3. As with Wolkoff and Kraimer’s formulas given in

section 3.3, only the field components of practical interest are listed above.
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5. COMPARISONS OF PROPAGATION FORMULAS

In section 3, Bannister’s ELF propagation formulas were presented for both VED and HED
sources radiating in a spherical earth-ionosphere waveguide, where both the source and field
points are located on the earth’s surface. In section 4, spherical waveguide formulas for VED
and HED sources were given. The spherical waveguide formulas are expected to be more
accurate at antipodal ranges because they have a range dependence that is more accurate than
Bannister’s formulas, which are based on the earth-flattening approximation with curvature

correction,

In this section, plots of the spherical waveguide and Bannister’s ELF propagation formulas
are presented as functions of range for both daytime and nighttime propagation conditions at
several frequencies in the ELF band. Results are presented for VED and HED sources, where
both the source and field points are located on the surface of the earth. In the plots of Bannister’s
formulas, separate graphs of the direct great-circle path field and the summation of the direct and
indirect great-circle path fields are given. The comparisons presented here will help to more
accurately establish the maximum ranges of validity of Bannister’s formulas. Plots of only the
dominant field components are presented, i.e., EY, H»?, E;’e , H ze ,and H ge .

For a HED source, the plots presented in this report are at the azimuth angle ¢ in which the
magnitude of the field component is a maximum. In particular, the plots of E fe and H (’;‘" are
given for @ = 0° and the plots of H ge are given for ¢ = 90°. In addition, for the spherical
waveguide formulas, the spherical coordinates » and @ are replaced by the cylindrical
coordinates z and p, respectively, where z =r — a, p = a0, and a is the earth’s mean radius. The

unit vectors in these coordinate systems are related as follows: £ =7 and p = 6.

Table 5-1 is a list of the propagation parameters at several ELF frequencies under typical
daytime and nighttime conditions. The propagation parameters c/v, &, and » were obtained from
Bannister (reference 16) and are based on an exponential conductivity profile of the ionosphere
(reference 17). The degrees of the Legendre function v, in the spherical waveguide formulas
that are listed in this table are computed from formula (4-8). It should be mentioned that the 76-
Hz parameters listed in this table are different from those obtained from Wolkoff (reference 18)
for use in an earlier investigation (reference 7). In that study, Wolkoff determined the 76-Hz
propagation parameters from the measured data listed by Bannister (reference 17). The 76-Hz
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frequency is of particular interest in applications because it is the center frequency of the U.S.
Navy Submarine ELF Communications System.

Table 5-1. Propagation Parameters for Typical Daytime and Nighttime Conditions at
Several Frequencies as Obtained from Bannister (Reference 16)

Fre&;’;my P(r:‘(’)‘l’:ﬁfigg“ c/v | @@B/Mm) | h(km) Vo
30 Daytime 1.31 0.60 51 4.75 - j 0.440
30 Nighttime | 1.14 0.70 73 4.07—j 0513
76 Daytime 125 14 53.5 12.2— 1.03
76 Nighttime | 1.12 0.90 77 10.9 —j 0.660
100 | Daytime 1.23 1.8 55 159 1.32
100 | Nighttime | 1.12 1.15 77 14.5— j 0.844
300 | Daytime 1.17 5.0 59 46.4—j 3.67
300 | Nighttime | 1.10 2.7 81 43.6— 1.98

5.1 RESULTS AT 76 HZ

Plots of the computed magnitude and phase of the vertical electric field produced by a VED
under daytime propagation conditions at 76 Hz are given in figures 5-1a and 5-1b, respectively. In
addition, plots of the magnitude and phase of the azimuthal magnetic field from a VED source are
presented for the same propagation conditions in figures 5-2a and 5-2b, respectively. Each of
these graphs are given as a function of the distance measured from the antipode p,, which is
defined in terms of the direct great-circle path distance p measured from the source as p, = a — p
and illustrated in figure 3-2. Figures 5-1a and 5-2a show an interference pattern that is greatest in
the vicinity of the antipode and slowly diminishes with increasing distance from the antipode.
The interference is caused by the combination of the direct and indirect great-circle path fields.

In figures 5-1a and 5-2a, note that Bannister’s direct great-circle path field components do not
show an interference pattern because they do not include the indirect great-circle path
contribution.
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In figure 5-1a, Bannister’s total field (direct plus indirect great-circle path formulas) result
for E7° shows good agreement with the spherical waveguide formula for all ranges except those
that are very close to the antipode. In particular, Bannister’s total field result for E)° agrees to
within 1 dB of the spherical waveguide formula for p, = 1.15 Mm or, equivalently, p = 18.87
Mm. Incomparison, Bannister’s direct great-circle path formula for E}° agrees to within 1 dB
of the spherical waveguide formula for p, = 6.09 Mm or, equivalently, p = 13.93 Mm. Clearly,
under these propagation conditions, Bannister’s total field results are much more accurate than

Bannister’s direct great-circle path results at antipodal ranges.

A comparison of figures 5-1a and 5-2a indicates that Bannister’s total field result for H l‘;f
does not agree as closely with the corresponding spherical waveguide formula as E)°. In figure
5-2a, Bannister’s total field result for H (‘;" agrees to within 1 dB of the spherical waveguide
formula for p, = 1.89 Mm or equivalently, p = 18.13 Mm. In addition, Bannister’s direct great-
circle path formula for H o agreesto within 1 dB of the spherical waveguide formula for
P, = 6.78 Mm or equivalently, p = 13.24 Mm. The poorer agreement in Bannister’s total field
res_ult for H ;’D" is because its range dependence is proportional to the first derivative of
P (- cos 6) as compared with E7¢, which has a range dependence that is directly proportional to
P (—cos 6) . This observation is attributed to the fact that in the earth-flattening approximation

for P (- cos 6), each successive derivative introduces additional error into the approximation.

The phase plots for £}* and H ;’0" , given in figures 5-1b and 5-2b, respectively, show a
similar comparison of Bannister’s results with the spherical waveguide formulas as was observed
for the field magnitudes. In figure 5-1b, Bannister’s total field result for E?¢ agrees to within 5°
in phase of the spherical waveguide formula result for p, = 1.35 Mm or, equivalently, p = 18.67
Mm. In figure 5-2b, Bannister’s total field result for H ;f agrees to within 5° in phase of the
spherical waveguide formula result for p, = 3.67 Mm or, equivalently, p = 16.35 Mm.
Bannister’s direct great-circle path formulas for E}¢ and H? agree to within 5 ° in phase of the
corresponding spherical waveguide formula results for p, = 7.29 Mm and p, = 7.30 Mm,
respectively. As expected, the phase results computed from Bannister’s total field formulas
agree more closely with the spherical waveguide formulas than do Bannister’s direct great-circle

path formulas.
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Plots of the computed magnitudes and phases of the HED field components Eé’g , H ge ,
and H gf under daytime propagation conditions at 76 Hz are given in figures 5-3, 5-4, and 5-5,
respectively. The magnitude plots show that Bannister’s total field results for Ef" » H g“ , and
H ge agree to within 1 dB of the corresponding spherical waveguide formula results for p, = 1.89
Mm, p,=2.12 Mm, and p, = 2.67 Mm, respectively. Note that the ranges of agreement for H (‘;,e
and £ é"’ are the same. This observation is not surprising because the range dependencies of
these field components are each proportional to the first derivative of P (- cos 6). The poorer
agreement for H (’;f is because its range dependence is proportional to the second derivative of

P (- cos 6) resulting in additional error in the earth-flattening approximation.

In figures 5-3a, 5-4a, and 5-5a, Bannister’s direct great-circle path results for £ é"" , H g“ , and

H f}f agree to within 1 dB of the corresponding spherical waveguide formula results for p, = 6.78

ve

Mm, p, =6.77 Mm, and p, = 6.08 Mm, respectively. Note that the ranges of agreement for H o

E é‘e ,and H ge are nearly identical because the formulas have the same range dependence.
Surprisingly, H (’{’f shows a better agreement with the spherical waveguide formulas than the

other direct great-circle path field components.

The phase plots for £ fe , H" and H gf’ , given in figures 5-3b, 54b, and 5-5b, respectively,
show a similar comparison of Bannister’s results with the spherical waveguide formulas as was
observed for the field magnitudes. In these plots, Bannister’s total field results for Eé"' , H g" , and
H gf agree to within 5° in phase of the corresponding spherical waveguide formula results for
pg = 3.67 Mm, p, =3.67 Mm, and p, = 6.14 Mm, respectively. Based on these comparisons, the

phase agreement for each of these field components is worse than observed in the corresponding

he
¢

agree to within 5° in phase of the corresponding spherical waveguide formula results for p, =
7.30 Mm, p, = 7.31 Mm, and p, = 9.56 Mm, respectively. As was observed for the VED fields,

magnitude comparisons. Bannister’s direct great-circle path formulas for Eé’e , H ge ,and H

the phase results computed from Bannister’s total field HED formulas agree more closely with

the spherical waveguide formulas than do Bannister’s direct great-circle path formulas.
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Plots of the computed magnitudes of the VED field components E}¢ and H ;’f under typical
nighttime propagation conditions at 76 Hz are given in figures 5-6a and 5-6b, respectively.
Similar plots of the computed magnitudes of the HED field components E ;‘e , H ge ,and H ge
under typical nighttime propagation conditions at 76 Hz are given in figures 5-7a, 5-7b, and 5-7c,
respectively. In these plots, Bannister’s total field results for E}°, H g E;‘e, H ge, and H (’;e
agree to within 1 dB of the corresponding spherical waveguide formula results for p, > 1.49 Mm,
Pz =2.50 Mm, g, >22.50 Mm, p, >2.51 Mm, and p, > 3.47 Mm, respectively. Although these
agreements are not quite as good as the corresponding daytime propagation results, they follow
the same trend. In comparison, Bannister’s direct great-circle path field results for E°, H it
E é’e , H ze, and H ge agree to within 1 dB of the corresponding spherical waveguide formula
results for g, = 10.20 Mm, g, = 10.24 Mm, p, > 10.24 Mm, g, > 10.25 Mm, and g, > 10.21 Mm,
respectively. These ranges of agreement are considerably worse than what was observed for the
direct great-circle path field results under daytime conditions. This observation is attributed to
the lower attenuation at nighttime which results in an interference pattern from the two great-

circle path fields that extends to greater distances from the antipode.

A summary listing of the ranges over which Bannister’s direct great-circle path and total
field formulas agree to within 1 dB in magnitude of the corresponding spherical waveguide
formulas are given in tables 5-2a and 5-2b, respectively, for both typical daytime and nighttime
propagation conditions at 76 Hz. In these tables, the normalized range fp, is included in
parentheses, where = Re{k} = 2n/A is the phase constant of the quasi-TEM wave and A is the
corresponding wavelength. (Normalized ranges will be discussed later in this section.)

A comparison of these tables clearly shows that Bannister’s total field formulas have a much
greater range of agreement with the spherical waveguide formulas than do Bannister’s direct
great-circle path formulas. From table 5-2a, the ranges of satisfactory agreement for Bannister’s
direct great-circle path formulas extend from p, > 6.08 Mm to g, > 10.25 Mm, depending on the
field component and propagation condition. In comparison, from table 5-2b, the ranges of
satisfactory agreement for Bannister’s total field formulas extend from g, > 1.15 Mm to g, >
3.47 Mm. As previously mentioned, the poorer agreement observed for Bannister’s direct great-
circle path formulas is attributed to their inability to predict the interference produced by the
superposition of the direct and indirect great-circle path fields.
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Table 5-2a. Ranges Over Which Bannister’s Direct Great-Circle Path Field Formulas Agree
to Within 1 dB in Magnitude of the Spherical Waveguide Formulas at 76 Hz

c Field Propag.a.tion Range
omponent Condition
E} Daytime £, 26.09 Mm (fo, >12.13)
Nighttime £, >10.20 Mm (Bo, > 18.20)
Hy Daytime 0,>6.78 Mm (Bp, > 13.50)
Nighttime 0,>10.24 Mm (Bp, > 18.27)
El Daytime 0,>6.78 Mm (Bp, > 13.50)
Nighttime £, >10.24 Mm (fp, > 18.27)
Hyf Daytime 0,>6.77Mm (Bo,> 13.48)
Nighttime 0,>10.25Mm (8o, > 18.29)
Hy Daytime 0,>6.08 Mm (fp, > 12.11)
Nighttime 0,210.21 Mm (fp, > 18.21)

Table 5-2b. Ranges Over Which Bannister’s Total Field Formulas Agree to Within
1 dB in Magnitude of the Spherical Waveguide Formulas at 76 Hz

Field Propag.a.tion Range
Component Condition

E) Daytime 0,21.15Mm (Bp,>2.29)
Nighttime 0,21.49Mm (Bo, > 2.66)
HF Daytime 0,>1.89 Mm (Bo, > 3.76)
Nighttime 0,>2.50 Mm (Bo, > 4.46)
Ele Daytime 0,>1.89 Mm (Bo, > 3.76)
Nighttime 0, >2.50 Mm (Bo, > 4.46)
H Daytime £,>2.12Mm (Bo,>4.22)
Nighttime 0,22.51 Mm (Bo, >4.48)
H¥ Daytime 0,>2.67 Mm (8o, >5.32)
Nighttime 0£,23.47Mm (Bo,>6.19)
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5.2 RESULTS AT OTHER FREQUENCIES

In order to obtain a better assessment of the maximum ranges of validity of Bannister’s
propagation formulas, it is necessary to compare them with the spherical waveguide formulas at
additional frequencies across the ELF band. Plots of the computed magnitudes and phases of the
VED field components E)* and H ;f under typical daytime propagation conditions at 30 Hz are
given in figures 5-8 and 5-9, respectively. Similar plots of the HED field components E%¢, H ge ,
and H q’;e under typical daytime propagation conditions at 30 Hz are given in figures 5-10, 5-11,
and 5-12, respectively. A comparison of these plots with the corresponding 76-Hz graphs
indicates that the 30-Hz field values are generally larger in magnitude, and the interference
produced by the two great-circle path fields at 30 Hz extends to much greater distances from the
antipode. These observations are the result of the lower attenuation at 30 Hz, which allows the
indirect great-circle path fields to propagate over greater ranges from the source. At 30 Hz,
Bannister’s total field results for E}°, H ¥, E é"’ ,H ze ,and H ";"" agree to within 1 dB of the
corresponding spherical waveguide formula results for g, >2.71 Mm, p, > 4.55 Mm, p, > 4.55
Mm, 0, > 4.52 Mm, and p, > 6.44 Mm, respectively. These results indicate that Bannister’s total
field formulas show a poorer agreement with the spherical waveguide formulas than the 76-Hz
results. Similarly, Bannister’s direct great-circle path formulas do not agree as well with the
spherical waveguide formulas as at 76 Hz.

Magnitude plots of the HED field components E ;‘e ,H" and H g" under typical nighttime
propagation conditions at 30 Hz are given in figures 5-13a, 5-13b, and 5-13c, respectively. In
these plots, Bannister’s total field formulas for E ?e , H :)'e, and H gf agree to within 1 dB of the
corresponding spherical waveguide formula results for p, > 2.76 Mm, p, > 2.83 Mm, and p, >
4.69 Mm, respectively. Unlike the 76-Hz results, the 30-Hz data show that Bannister’s total field
formulas produce a better agreement with the spherical waveguide formulas at nighttime than in
the daytime. The one exception to this observation is E zv" , which shows a worse agreement at
nighttime. The general improvement in the nighttime results at 30 Hz is probably attributed to
the larger nighttime attenuation as indicated in table 5-1.

Table 5-3 is a summary list of the ranges over which Bannister’s total field formulas agree
to within 1 dB in magnitude of the corresponding spherical waveguide formulas for both daytime
and nighttime propagation conditions at 30 Hz. A comparison of tables 5-2b and 5-3 clearly
shows that Bannister’s total field results improve at the higher frequency.
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Table 5-3. Ranges Over Which Bannister’s Total Field Formulas Agree to Within
1 dB in Magnitude of the Spherical Waveguide Formulas at 30 Hz

Corl:l;a(l)(lilent Pal:f:ﬁ?igzn Range
Ey Daytime P, =271 Mm (fpo, >2.23)
Nighttime Pz 23.10Mm (Bp, >2.22)
Hy Daytime 0,2 4.55Mm (B, >3.75)
Nighttime L2276 Mm (Bp, > 1.98)
Ef Daytime P2z 4.55 Mm (Bp, 23.75)
Nighttime Pa22.76 Mm (Bp, = 1.98)
H Daytime P, >4.52Mm (o, >3.72)
Nighttime £z >2.83Mm (Bo,>2.03)
Hy Daytime 0, > 6.44 Mm (8o, > 5.30)
Nighttime 0, >4.69 Mm (fp, > 3.36)

Plots of the computed magnitudes of the field components E}¢, H?, E?e, H ,’;e, and H f‘pe
under typical daytime propagation conditions at 300 Hz are given in figures 5-14a, 5-14b, 5-15a,
5-15b, and 5-15c, respectively. The plots show that the interference pattern produced by the
superposition of the two great-circle path fields attenuates rapidly with distance from the
antipode. This observation is the result of the large value of attenuation at this higher frequency.
The plots also show that Bannister’s formulas produce a better agreement with the corresponding
spherical waveguide formulas than at the lower frequencies. In particular, Bannister’s total field
results for E}¢, H¢, EM, H*, and H g" agree to within 1 dB of the corresponding spherical
waveguide formula results for g, > 0.32 Mm, p, > 0.59 Mm, g, > 0.59 Mm, g, > 0.59 Mm, and
Pz = 0.82 Mm, respectively. Bannister’s direct great-circle path formulas also produce a better
agreement with the spherical waveguide formulas at 300 Hz than at 30 Hz and 76 Hz because the
interference pattern does not extend to as great of a distance from the antipode as at the lower
frequencies.
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Magnitude plots of the HED field components E**, H ge’ and H (’;f under typical nighttime
propagation conditions at 300 Hz are given in figures 5-16a, 5-16b, and 5-16c, respectively.
Because of the lower attenuation at nighttime, the interference pattern produced by the two great-
circle path fields extends to greater distances from the antipode. As a result, at nighttime,
Bannister’s total field results at 300 Hz do not compare as well with the spherical waveguide
formulas as under daytime conditions. A similar observation was made at 76 Hz. In the 300-Hz
plots, Bannister’s total field formulas for E fe, H ge, and H ge agree to within 1 dB of the
corresponding spherical waveguide formula results for g, > 0.65 Mm, g, > 0.65 Mm, and p, >
1.22 Mm, respectively.

Table 5-4 is a list of the ranges over which Bannister’s total field formulas agree to within
1 dB in magnitude of the corresponding spherical waveguide formulas for both typical daytime
and nighttime propagation conditions at 300 Hz. A comparison of tables 5-2b, 5-3, and 5-4
indicates that Bannister’s total field results improve with increasing frequency.

Table 5-4. Ranges Over Which Bannister’s Total Field Formulas Agree to Within
1 dB in Magnitude of the Spherical Waveguide Formulas at 300 Hz

Component |  Condition Range
Er Daytime £,=>0.32Mm (Bp,>2.35)
Nighttime . >0.40 Mm (Bp, > 2.77)
Hy Daytime 0,>0.59 Mm (fBp, > 4.34)
Nighttime 0,>0.65Mm (Bo,>4.50)
El Daytime 0,>0.59 Mm (8o, >4.34)
Nighttime 0£,20.65Mm (fp,>4.50)
HY Daytime 0,>0.59 Mm (Bo,>4.34)
nighttime 0,20.65Mm (fp,>4.50)
HY Daytime 0,>0.82Mm (Bp, >6.03)
Nighttime 0,2 1.22Mm (Bp, > 8.44)

Table 5-5 is a list of the average normalized ranges (expressed in terms of p,) over which
Bannister’s total field formulas agree to within 1 dB in magnitude of the corresponding spherical
waveguide formulas. The ranges have been normalized in order to scale them with respect to a
wavelength in the waveguide. The ranges are averaged over the three frequencies discussed in
this report, namely, 30 Hz, 76 Hz, and 300 Hz. The third column in the table lists the average
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ranges for each field component under typical daytime and nighttime propagation conditions.
The fourth row in the table lists the ranges averaged over daytime and nighttime propagation
conditions for each field component.

The third column of table 5-5 indicates, on the average, that Bannister’s total field formulas
for E7* and H g" produce better agreement with the spherical waveguide formulas at daytime
than at nighttime. The opposite result is true for the other field components, H ;e , E ;‘e , H g“".
Note that the better agreement in the field components at nighttime was only observed at 30 Hz,
where the nighttime attenuation is greater than in the daytime. The results in the fourth column
of table 5-5 show that Bannister’s total field formula for E7¢ provides the best agreement with
the spherical waveguide formula and H (’;f produces the worst agreement. As mentioned, this
observation is attributed to the fact that in the earth-flattening approximation for P, (- cos 6),
each successive derivative introduces additional error into the approximation. Also note in the
fourth column of table 5-5 that H ;f , E é’e ,and H z" each produce a similar average agreement
with the corresponding spherical waveguide formulas. This result is attributed to the fact that the
range dependence of each of these components is proportional to the first derivative of
P (—cos 6). In summary, table 5-5 clearly shows that the spherical waveguide propagation
formulas are necessary for prediction of the ELF fields for ranges that are close to the antipode.

Table 5-5. Average Normalized Ranges Over Which Bannister’s Total Field Formulas
Agree to Within 1 dB in Magnitude of the Spherical Waveguide Formulas
(Averages Are Taken Over 30, 76, and 300 Hz)

Field Propagation Average Avg Norm. Range
Component Condition Normalized Range | (Day and Night)
E} Daytime Bo,>2.29 Bo,>2.42
Nighttime Bo,>2.55
HY Daytime Bo, >3.95 Bp,=>3.80
Nighttime Bo,>3.65
Ele Daytime Bp, >3.95 Bo,>3.80
Nighttime Bp, >3.65
HY Daytime Bo,>4.09 Bo,>3.88
Nighttime Bo,>3.67
HY Daytime Bp, >5.55 Bo,>5.77
Nighttime Bo,=>6.00 :
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6. SUMMARY AND CONCLUSIONS

ELF propagation formulas have been derived for dipole sources radiating in a spherical
earth-ionosphere waveguide, where the waveguide boundaries are approximated as scalar surface
impedances. The range dependencies in these formulas involve the Legendre function of the
first kind of complex degree and order zero or one of its first two derivatives. Several
approximations to the Legendre function were derived. Through use of the earth-flattening
approximation to the Legendre function, it was shown how the spherical waveguide formulas
reduce to Bannister’s simplified propagation formulas. In addition, through use of another
approximation to the Legendre function that is suitable for antipodal ranges, it was also shown
how the spherical waveguide formulas reduce to formulas that are similar to the antipode-
centered formulas that were previously derived by the author. Numerical results focused on the
quasi-TEM mode, the only propagating mode in the 30-Hz to 300-Hz band.

Comparisons of Bannister’s formulas with the spherical waveguide formulas were made for
VED and HED sources for the case where both the source and field points are located along the
surface of the earth. The 300-Hz results have shown that Bannister’s total field formulas
produce a good agreement with the spherical waveguide formulas to distances within less than
1 Mm from the antipode. This agreement degrades with decreasing frequency because of lower
attenuation. It was also found that the agreement between the formulas is worse for the field
components proportional to the derivatives of the Legendre function. Bannister’s direct great-
circle path formulas do not agree as closely with the spherical waveguide formulas because they
do not account for the interference produced by the indirect great-circle path contribution in the
vicinity of the antipode.

This report also presented derivations of the quasi-TEM spherical waveguide formulas for a
HED located above an anisotropic surface impedance. These modified spherical waveguide
formulas are extensions of Wolkoff and Kraimer’s formulas (references 4 and 5) and include the
antenna pattern factors that were previously derived in reference 6. These formulas will be useful
for the prediction of the EM fields radiated by the U. S. Navy’s four transmitting antennas at
antipodal ranges.

At antipodal ranges, the spherical model of the earth-ionosphere waveguide may not be
suitable because of the variation in the ionospheric reflection height along the great-circle paths.
As a result, the spherical waveguide formulas need to be modified in order to account for the

87




variations in the propagation parameters along the direct and indirect great-circle paths as
functions of solar elevation. Wolkoff and Casey (reference 15) present formulas for the effective
propagation parameters along a nonuniform earth-ionosphere waveguide. A development of
ELF propagation formulas for a nonspherical earth-ionosphere waveguide will be the subject of a
future investigation.
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APPENDIX A
ELECTROMAGNETIC FIELDS IN TERMS OF POTENTIALS
IN SPHERICAL COORDINATES

A.1 ELECTRIC AND MAGNETIC VECTOR POTENTIALS

Consider a homogeneous, isotropic medium of permittivity €, permeability y, and
conductivity 0. In this medium, there exist electric current and charge distributions J and p,
respectively, and fictitious magnetic current and charge distributions M and p,,, respectively. For

a time-harmonic dependence /%, Maxwell’s equations are written as follows (references 19, 20,
and 21):

VxE=—jouH-M, (A-1a)
VxH=jotE+], (A-1b)
V-E=£, (A-1c)
v-H=bn (A-1d)

In the above expressions, E and H denote the electric and magnetic fields, respectively, @ =2nf
is the angular frequency, and & = ¢ — jo/w is the effective permeability of the medium. The
electric and magnetic fields can each be expressed in terms of a pair of vector potentials. The
pair of vector potentials that are most commonly used are the magnetic vector potential 4 and
the electric vector potential F. The magnetic vector potential is associated with electric sources
(M =0, p,, = 0) and the electric vector potential is associated with magnetic sources (J =0,

p=0).

Consider the case when only electric sources exist (M = 0, p,, =0). From equation (A-1d),

the magnetic field is solenoidal and can be represented as the curl of another vector A,

H=4VxA. (A-2)

The multiplicative factor 1/u has been included to conform with the conventional definition. The
substitution of equation (A-2) into (A-1a) yields




Vx(E+ joA)=0. (A-3)

In expression (A-3), the term within the parentheses is irrotational and is, therefore, equal to the
gradient of a scalar potential @¢. Thus,

E=-jwA -VP° . (A-4)

A negative sign in front of the potential has been included to conform with the convention. An

alternate expression for the electric field can be obtained from expressions (A-1a) and (A-2) as

E=,1~(VxVxA—uJ). (A-5)
jous

The substitution of equations (A-2) and (A-4) into (A-1b) yields the general equation for the
magnetic vector potential, i.e.,

VxVxA-k*A=- jousVoe+ul , (A-6)

where k= wy/ ué is the wave number of the medium. From a theorem in vector calculus
(reference 22), a vector is uniquely specified by giving its divergence and curl within a given
region and its normal component over the boundary. Therefore, in the definition of the magnetic
vector potential in (A-2), 4 is underdetermined because its divergence has not been specified.
The specification of the divergence of A4 is referred to as the gauge condition (reference 23). The
gauge condition chosen usually removes the scalar potential term from equation (A-6), thereby
simplifying the equation. For the problems of interest in this report, spherical coordinates (r, 6,
¢) are used and only radially-directed current sources are of interest.

Consider the case when only magnetic sources exist (J =0, p=0). From equation (A-1c),
the electric field is solenoidal and can be represented as the curl of another vector F, i.e.,

E:—%VXF. (A-7)

The multiplicative factor -1/& has been included to conform with the conventional expression.
The substitution of expression (A-7) into (A-1b) yields

Vx(H+ ij) =0. (A-8)
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In equation (A-8), the term within the parentheses is irrotational and is therefore equal to the
gradient of a scalar potential ®*. Thus,

=—jwF - V" (A-9)

A negative sign in front of the scalar potential has been included to conform to the convention. An
alternate expression for the magnetic field can be obtained from expressions (A-1a) and (A-7) as

H=-1 (VxVxF—éM). (A-10)

. e

JOUg

The substitution of equations (A-7) and (A-9) into (A-1a) yields the general equation for the
electric vector potential, thus,

VxVxF—k?F =- jousVo" + iM . (A-11)

In a homogeneous source-free region (i.e., J = M = 0), the electromagnetic (EM) fields can
be expressed in terms of both vector potentials. From expressions (A-5) and (A-7), the electric

field is given by
E=—1 vxvxa-lvxF,. (A-12)
Jjooug €

From formulas (A-2) and (A-10), the magnetic field is given by

: ~

H=1Vxa+—1_VxVxF. (A-13)
Jjoué

Equations (A-12) and (A-13) are the general formulas for the EM fields in terms of the vector
potentials in a source-free region.

In the representation of the EM fields in terms of potentials, suitable expressions can be
obtained from only one scalar component of both 4 and F. In spherical coordinates, suitable
choices for 4 and F are given in terms of their radial components as

A=FA, (A-14a)
and

F=#F , (A-14b)
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where 7 denotes the unit vector along the radial direction (see figure 4-1), and the radial

components 4, and F, are scalars. The substitution of equation (A-14a) into (A-6) with J =0
yields

VxVx(FA)-Kk)FA)=— jousvVeoe . (A-15)
T r

Similarly, the substitution of (A-14b) into (A-11) with M = 0 results in

VxVx#F)-k*FF)=- jousVoh (A-16)

To eliminate the scalar functions @¢ and &* in equations (A-15) and (A-16), respectively,
gauge conditions for 4 and F must be defined. To obtain the appropriate gauge condition for
each vector potential, one must first look at the three spherical components of each vector

potential equation. For example, in equation (A-15), the 7, 6, and ¢ components are

-2
1 gl 0A 1 0<A 2. . ODC
azAr Y/ 14
grog ~ O Gg (A-17b)
and
A, . goe
arag - M g (A-17c)

The 6 and ¢ components of equation (A-15), given by expressions (A-17b) and (A-17c),
respectively, are satisfied identically under the following gauge condition:

0A
or

! = joouEde . (A-18)

The substitution of the above gauge condition into the radial component equation (A-17a) yields

62Ar 1 0 0A, 1 a2Ar 2
YV qr = . A-19
or? * r2sin 6 a6 sin 6 00 + r2 Sjn2 0 f)(])z +k Ar 0 ( )

The first term in the above expression can be rewritten as

azAr:%i[ﬂ A(i)} | (A-20)



The substitution of (A-20) into (A-19) followed by multiplication by 1/ yields
1.9 za(A) 19 a(A) 1 GZ(A)
r2 ar[r or + r2sin 6 00 sin 6 06 * r2sin2 @ |02\ T

The above equation may be written more concisely as

+ k2(AT) 0.(A-21)

(V2+42) éfl -0. (A-22)

Therefore, 4,/r is a solution of the scalar Helmholtz equation. Following a similar procedure for

equation (A-16) in spherical coordinates results in
F
(V2+k2) 5 =0 (A-23)

provided that the following gauge condition is satisfied:

F
87‘r = —jw,u?@h . (A-24)

Formulas for the EM field components in terms of 4, and F, can be obtained through
substitution of expressions (A-14a) and (A-14b) into (A-12) and (A-13). In spherical
coordinates, the field components are given as follows:

_ 1 92 2 -
B = ( ok )A (A-252)

10%4, 11 OF

__1 1 1 ’ )
Eo= jous T 9rd6 ~ g rsin0og’ (A-25b)
11 0% g OF )
Ey= joug 1sin 6 aratp + & 00 (A-25c¢)
" jous \ 9r2
-1 1 aAr 1 1 0 F ]
0= TSN 009 " oz T 9700 (A-25€)
and
A-5




2
_ 194, 1 1 9°F, ]
¥ ur 00 + ‘]'(D,ng rsin 0 araq) ’ (A 25f)

When F, = 0, then H, = 0, and the fields are referred to as transverse magnetic (TM) with respect
to the radial direction. Similarly, when 4, = 0, then E, = 0 and the fields are referred to as

transverse electric (TE) with respect to the radial direction.

A.2 HERTZ VECTOR POTENTIALS

An alternate set of vector potentials that are frequently used in EMs are the electric- and
magnetic-Hertz vectors ¢ and 7*, respectively. These vectors are defined in terms of the
magnetic- and electric-vector potentials as follows (reference 20)

A = joudme, (A-26a)
and

F = joutmh . (A-26b)

Therefore, in the frequency domain, the replacement of 4 and F by the Hertz vectors amounts to
nothing more than the inclusion of a complex constant factor. The substitution of the above
definitions into equations (A-12) and (A-13) yields

E=VxVxa¢—jouV xah, (A-27)
and |

H=jotVxxt+VxVxah (A-28)

The above formulas are the EM fields in a homogeneous source-free region in terms of the Hertz

vectors.

To represent the EM fields in spherical coordinates in terms of the Hertz vectors, suitable
expressions can be obtained from only one scalar component of both 4 and F. Following
expressions (A-14a) and (A-14b), the following are defined:

me=Fat=Frve, (A-29a)

and



]

wh=Fnah="+ rot (A-29b)

With the above definitions, the same procedure after expressions (A-14a) and (A-14b) is
followed, resulting in

V2we L k2pe=Q, (A-30a)
and
V2ph i 2ph=0 (A-30b)

The terms ¥¢ and ¥* are sometimes referred to as the Debye potentials (reference 23).

Formulas for the EM field components in terms of ¥¢ and ¥” can be obtained through the
substitution of expressions (A-29a) and (A-29b) into (A-27) and (A-28). In spherical

coordinates, the field components are given as follows:

2
E = (% + k2) v, (A-31a)
£ -1 2(rve)  jou oW (A-31b)
6~T 9r960 ~sin@ 0¢ ’ )
2 e h
IR L2 5 T} 4
¢ 7sind drag TIOM5g > (A-31c)
2
H = (% + k2) rwh), (A-31d)
_ Jjwg a%e 1 a(r¥h
0=3in6 ¢ T ora@ ’ (A-3le)
and
L A A 4]
H,=—jot -5+ 500 rog (A-316)

In the above formulas, #¢=r ¥¢ and % =r W When ¢ =0, the fields are TM with respect
to the radial direction. Similarly, when % = 0, the fields are TE with respect to the radial

direction.

A-7 (A-8 blank)
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APPENDIX B
SOLUTION OF THE HELMHOLTZ EQUATION
IN SPHERICAL COORDINATES

In spherical coordinates, it is shown in appendix A that the electromagnetic (EM) fields can
be expressed in terms of the two Debye potentials, ¥¢ and ¥*. In addition, at a source-free
point, it was shown that these two scalar functions each satisfy the Helmholtz equation, namely

V2P 4+ 2P =0 | B-1)

In this report, because the transverse magnetic (TM) and transverse electric (TE) fields are
derived for axisymmetric sources, the Debye potentials are determined under axisymmetric
conditions. Therefore, under axisymmetric conditions, the Helmholtz equation is expressed in
spherical coordinates as

Lﬁ_zBW) 1 0 (g0 g9%), r2w= ]
72 ar(’ or )" 72sin @ ae(smeae)*k ¥=0, (B-2)

where ¥ = ¥(r,0).
To solve equation (B-2), the separation of variables method is applied. In this method, let

H(r,6)=R(r) T(0) . (B-3)

The substitution of expression (B-3) into (B-2) followed with the multiplication of each side of
the equation by » %/RT yields

% %(ﬂ‘cll—lre) + T siln 0 dL,G(Sin 0 %) +kr2=0. ®-4)

The above equation can be rewritten as an r-dependent part on one side and a 8-dependent part

on the other side, each of which can be set equal to an arbitrary constant v (v+1) resulting in

Ad[,2dR\ 420 =1 df. gdl)_ .
dr(r dr)+kr —Tsinadg(smﬂda)_v(vﬂ). (B-5)

Expression (B-5) can be decomposed into 7-dependent and 6-dependent differential equations as

B-1




-g;(ﬂ‘—fj;) +|k2r2 —v(v+D|R=0, (B-62)
and
1 _d(¢npdl - -
S dB(Sm 0 d9)+ viv+1)T =0 . (B-6b)

The solution of equation (B-6a) is given by
R(r) = AhDkr) + BR@(kr), B-7)

where 71{!)(kr) and 1®)(kr) are the spherical Hankel functions of the first and second kinds,

respectively, of order v, and 4 and B are arbitrary constants. The spherical Hankel functions are
expressed in terms of the cylindrical Hankel functions as (reference 24)

hXkry =/ 5 HY) k), m=1,2. (B-8)

The solution of (B-6b) is given as follows:
T(6)=CP(-cos 8)+DQ (-cos 8), (B-9)

where P, and Q, are Legendre functions of the first and second kinds, respectively, of degree v
and order zero. It should be noted that P, is singular when its argument is —1 (6 = 0), while Q,, is

singular when its argument is +1 (6= 0, ). The minus sign has been included in the argument
so that P, is singular at 8= 0.

For the three radiating sources under consideration in this report, the EM fields are finite
everywhere except at the source location (r =r, 8= 0). Therefore, O, is not an acceptable

solution of equation (B-6b) and D = 0. Thus, the substitution of formulas (B-7) and (B-9) into
(B-3) yields

Y(r,0) = |AhDKkr) + BR®kr) | P (- cos 6) . (B-10)

Two of the three constants 4, B, and v are determined from the boundary conditions at the inner
(r = a) and outer (r = a + h) surfaces.



) APPENDIX C
TRANSVERSE MAGNETIC (TM) AND TRANSVERSE ELECTRIC (TE)
MODAL EXPANSIONS IN A SPHERICAL WAVEGUIDE

Consider the spherical earth-ionosphere waveguide described in figure 1-1. The main interest
of this report is the determination of the electromagnetic (EM) fields radiated in the waveguide
(a =r=a+ h) by a dipole source located along the north pole (8= 0) of the spherical coordinate
system. The waveguide is filled with air and has a permittivity £, = 8.854 x 10"12 F/m, a
permeability 1, = 4n x 107 H/m, and an intrinsic wave number of k 0= WYTES

o€, » Where wis the

angular frequency in radians per second (rad/s). The spherical waveguide boundaries along the
earth (r = a) and the ionosphere (» = a + h) are characterized by scalar surface impedances.
These impedances are approximations of the general tensor surface impedances that are more

representative of these boundaries. However, the scalar impedances allow for tractable solutions
of the field equations.

In this appendix, the transverse magnetic (TM) and transverse electric (TE) modes that
radiate in a spherical earth-ionosphere waveguide are derived under the assumption that the
fields are axisymmetric. The axisymmetric TM modes are launched by a vertical electric dipole
(VED) located along the north pole of the waveguide. Similarly, the axisymmetric TE modes are
launched by a vertical magnetic dipole (VMD) located in the waveguide along the north pole.

As shown in appendix H, the HED fields involve the superposition of both the TM and TE
modes.

C.1 TM MODES

In appendix A, it is shown that the TM fields with respect to the radial direction can be
obtained from the radial component of the electric-Hertz vector #¢. Under axisymmetric
conditions (?/?¢ = 0), the EM fields are obtained from equations (A-31) and are expressed as

_[98% .2 e 1 al|. ,0%°

Er—(ar2+k0)(r‘}’)-—rsing—ae smG—aG , (C-1a)

E -1 9%(rwe) C.1b
6~ 7 o9rof ° (C-1b)




and

Hq)=—jweo 20 (C-1¢)
Note that the three remaining field components vanish, namely E, = H, = Hg= 0. In the above
formulas, the scalar function ¥* is a Debye potential and is related to ¢ as
al

Ye= 7 o (C—Z)

where Y€ is a solution of the scalar Helmholtz equation given by (A-30a). The solution of the
Helmholtz equation is derived in appendix B and is given by expression (B-10). This solution

can be rewritten as follows:
pe=hDk r) +BLhD(k r) | P (- cos 6), (C-3)

where B! and v are constants. The constants BY and v are determined from the boundary

conditions at the inner and outer boundaries of the waveguide that are given below. In expression
(C-3), note that a constant multiplying h{"(k ,r) has not been included because it is unnecessary

in satisfying the boundary conditions.

Under the assumptions of a homogeneous, isotropic earth (inner sphere) and a homogeneous,
isotropic ionosphere (outer region) of constant height 4, the surface EM fields satisfy the
following boundary conditions:

EG
z,=- 3 (C-4a)
Ylr=a
and
E
_ ¢
Z,= 7% , (C-4b)
Yipza+h

where Z, and Z, denote the surface impedances along the air-earth and air-ionosphere interfaces,

respectively. The substitution of the field component expressions (C-1b) and (C-1c) into the
boundary conditions (C-4a) and (C-4b) yields

1 02rwe)
a  orof

R &
TI0% e 0 | _

r=a r=a

(C-52)

and
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(a+h)

orof

r=a+h

owe

=5 (C-5b)

~-jwe Z, .
r=a+h

Note that the 8 derivatives in the above boundary conditions are continuous across each
interface. In addition, the surface impedances Z, and Z, are each constant along the surfaces r =

a and r = a + h, respectively. Therefore, the boundary conditions (C-5a) and (C-5b) reduce to

1 YY) .
Fa o) T, (C-62)
and
1 o(rye) R
Karhy o |, 2¥ roann (C-6b)

where A, = Z /1, and A, = Z,/1, denote the normalized surface impedances of the inner and

outer boundaries, respectively, and 7, = \/u /e, is the intrinsic impedance of free space.

The substitution of expression (C-3) for ¥¢ into the boundary condition (C-6a) can be solved

for BY to yield

a[uhg,l)(u)]

1 _iARD

ug ou u=u, JAgh"v (ug)

Bé= - , (C-7a)

ofun@w)||

I A | — A @

iy ou yeu JAH ()

g

where u = k,r and u, = k,a. Following a similar procedure, the substitution of expression (C-3)
for ¥ into the boundary condition (C-6b) can be solved for B¢ to yield

o|uh P |

1 )
ui au ll=l£»+JAth (ul)
Bé= - , (C-7b)
a[uh(z)(u)]
1 v ,
u_i T +‘]Aeh(v2)(ui)

u=u;




=1. (C-8)

where u; = k,(a + h). The TM field components must satisfy the boundary conditions (C-4a) and
(C-4b) simultaneously. Therefore, the constant B, in expression (C-7a) is set equal to (C-7b)
and yields
a[uh(vz)(u)] 0[1111(1)(11)]
I S A | ) 1 LV a2 (1)
i o i, JAJu ) o u:u‘.+ jA R D (u)
a[uh(l)(u)] a[uh (2)(11)]
1 vl o) | 2)
i o0 Agh‘, (u g) Ry + jA ()

Uu=1u,

The above expression denotes the characteristic or modal equation for the TM modes in a

spherical earth-ionosphere waveguide. The solution of expression (C-8) yields a discrete set of
eigenvalues Vv,,, where n denotes an integer index and corresponds to a particular mode.

Given the infinite number of discrete eigenvalues that satisfy the characteristic equation (C-

8), ¥¢ can be expressed in terms of a modal expansion as

'I/e—z Ll’e(r 0) = 2 A¢, Rf,(u)Pv(—cos 0),

n=0

where RY is defined as

_ 2
R; (u) = hg,n)(u) + By, h(",,)(") .

(C9)

(C-10)

In addition, A¢, is referred to here as the modal excitation coefficient and depends on the source

strength. The modal indices # in expression (C-9) correspond to the TM mode indices for the

parallel-plate waveguide model as defined in section 2.1. Expressions for the modal expansions
of the TM fields are determined through the substitution of the formula (C-9) into equations

(C-1) and are given as follows:

I'

K Z A% v, (v, + 1) RS (1) P, (—cos ),

E,= 7 2 A d”[uRe (u)] P, , (=cos 0),

and

(C-11a)

(C-11b)



LN d
H, =~ jo, go A8 RS () 5 P, (~cos 6) . (C-11c)

The expression for E, was obtained through use of the relation

2
(% + kg) [k | = D Ok ) m=1,2 (C-12)

The above formula can be obtained from expression (B-6a) through the following equivalence:

d

d2
7 =r W[rh(;”)(kor)] ,m=1,2. (C-13)

r2% Rk 1)

C.2 TE MODES

In appendix A, it is shown that the TE fields with respect to the radial direction can be
obtained from the radial component of the magnetic Hertz vector £#. Under axisymmetric
conditions (?/? ¢ = 0), the EM fields are obtained from equations (A-31) and are expressed as

_[9% 42 w1 8. 9P ]
H,-(ar2+k0)(r'}’ )= g 2| sin 0 =5~ |, (C-14a)
2 h
_19°0¥%) ]
and
, oph
Eq)‘—"](l)luo‘“g-e—— . (C-14C)

Note that the three remaining field components vanish, namely H, = E, = Eg= 0. In the above
formulas, the scalar function ¥* is a Debye potential and is related to x# as

ph="_r | (C-15)

where ¥ is a solution of the scalar Helmholtz equation given by (A-30b). The solution of the
Helmbholtz equation is derived in appendix B and is given by expression (B-10). The application
of the solution (B-10) to equation (A-30b) yields

wh=\nDk )+ B Pk 1) | P (- cos 6) , (C-16)




where B 5 and v are constants. The constants B f’, and v are determined from the boundary
conditions at the inner and outer waveguide boundaries that are given below. As was previously
mentioned for the TM modes, a constant multiplying #{)(k ;) has not been included because it

is unnecessary in satisfying the boundary conditions.

Under the assumptions of a homogeneous, isotropic earth (inner sphere) and a homogeneous,
isotropic ionosphere (outer region) of constant height 4, the TE surface EM fields satisfy the
boundary conditions

E(P
Zg — _H_e_ s (C-17a)
r=a
E¢'
Zy=- 4~ , (C-17b)
Olr=a+h

where Z, and Z;, denote the surface impedances along the air-earth and air-ionosphere interfaces,
respectively. The surface impedances Z, and Z,, given above are generally different from those
corresponding to the TM modes given in expressions (C-4a) and (C-4b) because of the
anisotropy of the earth and ionosphere. In this report, the earth and ionosphere are each
represented as a constant surface impedance that is independent of the mode index, with the

surface impedance of the ionosphere different for TE and TM modes.

The substitution of the field component expressions (C-14b) and (C-14c) into the boundary
conditions (C-17a) and (C-17b) yields

L Z, 3%(rh
JORo 5G| _ =@ “ara6 | _ (C-152)
and
owh Z, o(roh
j L T = - - C-l8b
JORo =507 _ T (a+hy ora0 |,_,., (C-18b)

Note that the 0 derivatives in the above boundary conditions are continuous across each interface.

In addition, the surface impedances Z, and Z, are each constant along the surfaces » = a and

r=a + h, respectively. Therefore, the boundary conditions (C-18a) and (C-18b) reduce to



. h
Jogn| -1 0¥ | ]
qul r=a—koa or r=a’ (C l9a)

and

, h
J wh _ 1 oren )
Ahqr 'r=a+h_ k(a+h) or |,_,.4 (C-19b)

where A, and A, = Z;/1, denote the normalized surface impedances of the inner and outer
waveguide boundaries, respectively.

The substitution of expression (C-16) for ¥” into the boundary condition (C-19a) can be
solved for B! to yield

)
4 )] L ho)
ug ou u=u, 2 Vg
Bh= - , (C-20a)
@
1 G[uhv (u)] j——l——h(z)(u)
Uy ou u=u A, 8

where u and u, were defined in the TM mode derivation. Following a similar procedure, the
substitution of expression (C-16) for ¥” into the boundary condition (C-19b) can be solved for
B to yield

>3)

—uhgl)(u)]
1 vl S AG))
ui au u:ui+J Ahhv (ui)

Bh= — , (C-20b)

—uh(vz)(u)]
1 vl 1,0
u;  ou u=u,+J Ahh" (@)

i

D

where u; was defined in the TM mode derivation. Note that expression (C-20a) for the TE field
amplitude coefficient B” is equivalent to expression (C-7a) for the TM field amplitude
coefficient BY if A, is replaced by 1/4,. Similarly, expression (C-20b) for Bf’, is equivalent to
expression (C-7b) for B if A, is replaced by 1/4;. Because the TE field components must
satisfy the boundary conditions (C-17a) and (C-17b) simultaneously, the constant Bﬁ in
expression (C-20a) is set equal to expression (C-20b) and yields




ol uh@ %)
W M —j APy L -—————~a["h,” w] + j Ln)
u, ou u=u, A u; ou w=u, A v
=1. (C-21)
a[uh(l)(u)] 8[1:11(2)(51)]
1 v 1 B S | 1o
7 E - -J A, h (u,) i o s +J A, hi(uy)

The above expression denotes the characteristic or modal equation for the TE modes in a
spherical earth-ionosphere waveguide. Note that the above TE characteristic equation is
equivalent to the TM characteristic equation (C-8) if 4, is replaced by 1/4, and 4, is replaced by

1/4;. The solution of equation (C-21) yields a discrete set of eigenvalues v, , where m denotes

m?
an integer index and corresponds to a particular mode.

Given the infinite number of discrete eigenvalues that satisfy the characteristic equation
(C-21), ¥ can be expressed in terms of a modal expansion as

ph = 2 'P (r,H) = Z A@ Rg () P, (—cos ), (C-22)
. m = 1 m m m

m=1

where Rf_', (1) is defined as
Rl (uy= hDo) + BE ). (C-23)

In formula (C-22), A(l,' is the TE mode excitation coefficient and depends on the source strength.
The modal indices m in expression (C-22) correspond to the TE mode indices for the parallel-plate
waveguide model as defined in section 2.2. Expressions for the modal expansions of the TE fields

are determined through the substitution of formula (C-22) into equations (C-14) and are given as

k oo
H,==2 2 Al 9,(9,+ 1) RE (1) P, (~cos ), (C-242)
m=1
e
" mz—lAV"' c)u["R (")] Py, (=cos 0), (C-24b)
and
E, = jou, 2 A% Rl (u) P (~cos 6) . (C-24c)

m=1

Note that the expression for H, was obtained through use of formula (C-12).

C-8



APPENDIX D
PROOF OF ORTHOGONALITY OF RADIAL FUNCTIONS

In appendix A, it is shown that the transverse magnetic (TM) and the transverse electric (TE)
fields in a spherical waveguide can be expressed in terms of the Debye potentials ¥¢ and

", respectively. In appendix C, it is shown that the radial dependence of each Debye potential is
given in terms of a function R, (), u = k7, which satisfies the following differential equation:

dR
a%(u duv)_'_ [u2—v(v +1)] R,=0. (D-1)
The above equation may be rewritten as

;zz(uR) +[u2—v(v+D)|R,=0. D-2)

To prove the orthogonality of the TM mode radial functions, consider the radial functions
R ;(u) and R¢(u) corresponding to two different TM modes that satisfy the following differential

equations:

uj‘-’-fz-(uRe) [u2—u(u +D|Re=0, (D-3a)
and

;zz(uRe) (12— v(v +1)| Re = 0. (D-3b)

From formulas (C-6), the boundary conditions satisfied by each TM mode radial function are

given as
d(uR¢)
1 n . e
‘;g du ieu = JAan(”g) s (D'4a)
d(uR¢) ]
|, = AR, ©-4b)
U=Uu.

1

where u, = k,a, u; = k,(a+h), 1 is a complex eigenvalue that satisfies the TM mode

characteristic equation (C-8), and A, and A, denote the normalized surface impedances of the

D-1




inner and outer boundaries, respectively. If equation (D-3a) is multiplied by R¢(x) and equation
(D-3b) is multiplied by R (1), the difference of the resulting equations yields

(uRe)dd—z(uR") ~(uR?) Ed—z—(uRe):[v(vH) u(y+1)]Rf RE . (D-5)

If the above formula is integrated over the height of the waveguide followed by integration by
parts, the following is obtained:

u=u; u=1u; u;

(uRC) (;il(uR") {v(v+1) u(y+l)]f Rﬁ(u) R¢(u) du . (D-6)
¢ u=u, iy,

(uRf‘) (Z{("Re)

u=u

The application of the boundary conditions (D-4) to the above result yields the following

orthogonality relation:

L
f RZ(u) Ri(w) du=0 , uzv. D-7)
[/

g

Because the above result is independent of 6, the radial functions may be replaced by the

corresponding Debye potentials, i.e.,

Lli
fu 'I’ﬁ(u,@) Yeu,0)du=0, uzv. (D-8)

To prove the orthogonality of the TE mode radial functions, consider the radial functions
R ﬁ(") and R’(u) corresponding to two different TE modes that satisfy the differential equations
(D-3a) and (D-3b), respectively, where the superscript e is replaced by 2. From formulas (C-19),

the boundary conditions satisfied by each TE mode radial function are given as

d(uR™ ;
1 n — J ph R
ity i |-, ~ 4, Rj(u), (D-92)
and
d(uR") :
__1__ i — _L h -
"; du Uu=u. B Ah R”(lli), (D 9b)
D-2
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where A, denotes the normalized surface impedance of the outer boundary and 7] is a complex
eigenvalue that satisfies the TE mode characteristic equation (C-21). If the procedure below
expressions (D-4) is followed for the two TE radial functions Rﬁ(u) and R™(u) , the result
obtained is

N (urr) A
u=u

8 g

U=1u;

(4R )

Uu=u

U

=[v(v+1)-—,u(,u+l)]f i RIu) Riw) du . (D-10)

ug
The application of the boundary conditions (D-9) to the above result yields the orthogonality
relation

fui Riuw) Riu) du=0 , p=v . (D-11)

Ug
Because the above result is independent of 6, the radial functions may be replaced by the
corresponding Debye potentials, i.e.,

U;
[ Vhu,0) Phu.0)du=0 , pzv. (D-12)

Uy

The orthogonality relations (D-7) and (D-11) are valid provided that the surface impedances
of the inner and outer boundaries are independent of the mode indices. If the above procedure is
applied to two radial functions R;(u) and Rﬁ(u) , corresponding to one TM mode and one TE
mode, respectively, it is readily seen that these functions are not orthogonal. Therefore, the TM
and TE mode Debye potentials are not orthogonal with respect to each other. (The evaluation of
the integrals (D-7) and (D-11) for i = v is presented in appendix 1.)

D-3 (D-4 blank)




APPENDIX E
EXCITATION COEFFICIENTS FOR TRANSVERSE MAGNETIC (TM)
AND TRANSVERSE ELECTRIC (TE) MODES

In the derivation of the modal expansions of the electromagnetic (EM) fields in a spherical
waveguide given in appendix C, each term in the expansion includes an excitation coefficient.
Each modal excitation coefficient depends on the source strength and provides a measure of the
coupling into that mode. In this appendix, the excitation coefficients corresponding to the
transverse magnetic (TM) and transverse electric (TE) modes in a spherical waveguide are
derived. The excitation coefficients for the TM modes are applied in the derivation of the vertical
electric dipole (VED) fields in appendix F. In addition, the excitation coefficients for the TE
modes are applied in the derivation of the vertical magnetic dipole (VMD) fields in appendix G.

E.1 TM MODES

. Consider a VED of moment p =1 dl that is located at the radial distance r, = a + z along the

0= 0 axis of the spherical earth-ionosphere waveguide shown in figure 1-1. As shown in
appendix F, the differential equation for the electric Debye potential ¥¢ is given by

(V2+i2)we=-—Lo0-r), (E-1)

JOE ¥ ¢

where 6 denotes the Dirac delta function. The solution of the above differential equation at
source-free points (r ? ry) is derived in appendix C, section C.1, and is given in terms of a modal

expansion as

ver,0) = ngo Af,n Rf,n(u) P, (- cos 0), (E-2)
where R} has been defined as

R}, ) = hPw) + B hd(w) . ' (E-3)

In the above formulas, » denotes the mode index, u = k,r, A, is the excitation coefficient of the
nth TM mode, BY, is a constant that is given by either expression (C-7a) or (C-7b), h(vl)(u) and
h g,z)(u) denote the spherical Hankel functions of the first and second kinds, respectively, of order




V,, and P, denotes the Legendre function of the first kind of degree v,, and order zero. The

complex constant v, is determined from the solution of the characteristic equation (C-8).

From appendix D, the orthogonality condition for the TM mode radial functions is given by

u;
f RE () RS (u) du = “ R 1?0, (E-4)
u m n n
8

where “ Rf,n denotes the L, norm of Rf,’z as defined in appendix F, u, = kya , u; = ky(ath), and

O,y 18 the Kronecker delta defined as

1, m=n

6mn = {0 , mMER : (E"S)

If each side of expression (E-2) is multiplied by R and then integrated with respect to u, the
application of the orthogonality condition (E-4) to the resulting equation yields an expression for

the mode excitation coefficient A¢ , namely

1 “
A¢ = f Yer,0) RE (uydu , n=0,1,2, .... -6
Vn ” R PP, (—cos ) Ju, Va i

It is difficult to determine Aevn from equation (E-6) because ¥*(r, 6) is not known.

To determine the excitation coefficients A%, in formula (E-6), let 8 approach zero, resulting in

lli
lim [ We(r,0) R: () du
0—0 Uy n

Af/" = “ Rfl,n

E-7)

2 611_1)110 P",,(_ cos )

Because both the numerator and denominator are singular at @ =0, the above expression is an
indeterminate form. Then, from Magnus and Oberhettinger (reference 25),

912110 P, (-cos ) = —z"= In 62. (E-8)

Before proceeding with the evaluation of the numerator, one needs to look more closely at the

behavior of the Debye potential in the vicinity of the source.

E-2



 E S TN I T S T S T E T G G T O B S S .

The Debye potential ¥¢ can be expressed as the sum of a particular solution ¥¢ and a
homogeneous solution ¥} of the differential equation (E-1). The particular solution satisfies the
inhomogeneous equation (E-1) and the homogeneous solution satisfies the Helmholtz equation
(V2 +k 3,) ¥, =0. The homogenous solution ¥} is finite for all points within the spherical
waveguide and ¥¢ is singular at the source point r = r,. Therefore, in the vicinity of the source,
the particular solution ¥ is the primary influence of ¥ and, thus,

rli_Enrs pe= rl-ianis pe= ro}i:r%(: Yr,0). (E-9)

For a VED of moment p lying in free space, the solution of equation (E-1) is given by

(reference 23)

o—Jk,R

14
Yer,0) = P&r,0) = -
0= wr0) = b S (E-10)
where
1/2
R=’r—rs1=[r2—-2rrscos6+rs2] . (E-11)

From the above formula, it is easy to see that ¢ is singular atr =ry,

Because the integrand in the numerator of formula (E-7) is finite everywhere except at the
source point (r =r,, 8= 0), its only contribution to the integral is from the immediate

neighborhood of the source point. Therefore, expression (E-7) can be simplified to

I rg(l+e Wer 0) d

im r,0) dr

. kRS () e—»ofrsu_s) +(.6) E12)
n = 2 i — ’ :

v Rf/n 6}1_1310 Pvn( cos 0)

where u has been replaced by k,r and £ « 1. Note that RY (#) has been replaced by R¢ ()
because it is finite at the source point. The substitution of W ¢(r,6) in formula (E-10) into the
integral of equation (E-12) yields

) ro(1+¢€) p ) rs(1+8) ,— jk R
lim VYir,0)dr = ——— lim dr . (E-13)
0=0Jr1-¢ JAnwer 60 J, g
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From Sommerfeld (reference 26), let
r=r(l+mn) . (E-14)

where —e<mn < ¢, £ « 1. The substitution of formula (E-14) into expression (E-11) gives

1/2
R=rs[1——2(1+n)cos 0+(1+17)2] . (E-15)

As 80, cos 8 =1 - 6%2. Therefore, R may be approximated as

12
Rsrs{l =2(1+m) (1-6%2) + (1 + )2

~11/2
= rs[7]2+(1+n) 6‘] =r A/ n2+ 6%, (E-16)

where the last approximation was made because 77 « 1. Therefore, with the above approximation

for R, the numerator of the integrand in expression (E-13) can be approximated as
e FRe 1, (E-17)
The substitution of formulas (E-14), (E-16), and (E-17) into (E-13) yields

) ro(l+e
lim 4

€
P : dn
“r.)ydr=———1 —, -18
6—=>0Jr.(1-¢) S0 dr Jarwe 1 61‘210.[9'/’72+92 (E-18)

From a table of integrals (reference 27),

f% = 1n{n+ 2+ 02] . (E-19)

The application of formula (E-19) to the integral in (E-18) yields

€
f —J_;]l—l_é_zzln[s+v£2+62]—ln{—e+v82+02]. (E-ZO)
—e NN

For 0 « &, the following approximation can be made:

Vet 92 =£\/l+(9/8)2s£[1+%(0/s)2]=£+ o

¢

E-4



Therefore, from the above, the following is obtained:

2
8+‘\/82+92528+g—, (E-21a)
£
and
2
-e+¢32+62g§—. (E-21b)
£

The substitution of the approximations (E-21a) and (E-21b) into formula (E-20) yields

2 2 2
L ain|2e+ 2 |-In| | =n| 222 0020
./,12_,_ g2 2¢ 0</2¢
- l@;) ] In (26)21n 62 . (E-22)

If the limit of the above result is taken as 8 — 0 (with € finite), then

lim = —In62. (E-23)

C__dn
0—’0 ~84/n2+02

The above limit is the same as the one given by Sommerfeld (reference 26), but differs in sign
from the one given by Wait (reference 1). The substitution of the above result into formula

(E-18) gives

rs(1+¢
lim we(r,0) dr = ——2L

——In6%. -24
6—0Jr.(1-¢ Janwe 1 (E-24)

The modal excitation coefficients A¢ can now be obtained through substitution of the

n

limiting results (E-8) and (E-24) into expression (E-12), resulting in

_jn.p 1 Ry @)
n o 4r, sin v, ”Re 2
v

A¢ n=012, .., (E-25)

where 1, = 4/ u /¢, is the intrinsic impedance of free space. It should be mentioned that the

above result differs in sign from the one given by Wait (reference 1).
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E.2 TE MODES

Consider a VMD or, equivalently, an infinitesimally small loop of electric current with axis
along the radial direction that is located at the radial distance r, = a + z; along the 6= 0 axis of

the spherical earth-ionosphere waveguide shown in figure 1-1. As is shown in appendix G, the
differential equation for the magnetic Debye potential ¥* is given by

(V2 +k§,) wh=-Tor-r), (E-26)

where m is the current moment of the loop and 6 denotes the Dirac delta function. The solution
of the above differential equation at source-free points (r ? ry) is derived in appendix C, section

C.2, and is given in terms of a modal expansion as

whr,0) = mi;l A% R} (u) Py (- cos 0) (E-27)
where R(_’,m(u) is defined as

Ry ()= h{u) + B h(w) . (E-28)

In the above formulas, m denotes the mode index, Ail, is the excitation coefficient of the mth TE

mode, and B{f, is a constant that is given by either expression (C-20a) or (C-20b). The complex

m

constant v, is determined from the solution of the characteristic equation (C-21).
From appendix D, the orthogonality condition for the TE mode radial functions is given by

i 2
f R (u) R (u) du = “ R %o . (E-29)
u m n m
g

A
where “ Ry

delta defined in expression (E-5). If each side of expression (E-27) is multiplied by RQ and

denotes the L, norm of R f_’ as defined in appendix G and §,,, is the Kronecker

then integrated with respect to u, the application of the orthogonality condition (E-29) to the

resulting equation yields an expression for the mode excitation coefficient Ag , hamely

lllv
Af_‘, = 5 1 whr,0) Rf_l (wydu , m=1,2,3,... . (E-30)
" “ R(; P, (=cos 6) Ju,

It is difficult to determine Ai-', from equation (E-30) because ¥*(r, 0) is unknown.
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To determine the excitation coefficients Ail, in formula (E-30), let 6 — 0. Then,

fim f “ Wi 6) R (u) du
6—-0 ug mn

_ 1
A{i,m = E-31)

[R [P dim e s )

Following the same procedure as for the TM mode excitation coefficients, the magnetic Debye
potential ¥ satisfies the inhomogeneous differential equation (E-26) and can be expressed as

the sum of a particular solution ¥ and a homogeneous solution ¥}. The term ¥/ is finite for
all values of @ and r within the spherical waveguide and ¥ is singular at the source point r = r;.
The particular solution lI/s" of equation (E-26) is the same as the magnetic Debye potential for a
VMD in free space and is given by (reference 20)

Whr ) = whirg) = m_ € 0E 32
.0)= W) = I Cp E-32)

s

where R is given by expression (E-11).

Because the integrand in the numerator of formula (E-31) is finite everywhere except at the
source point (r = ry, 6= 0), its only contribution to the integral is from the immediate neighbor-

hood of the source point. Therefore, expression (E-31) can be simplified to

i ry(l1+e¢) Phir 0) d
m 7, v
kRE (n) 60 f,s(l Ly a0

2 3 _ s (E—33)
Rgm 611—I>n0 Pvm( cos 6)

Vm

where u has been replaced by k,r and € « 1. Note that R f_’ (#) has been replaced by R f_f (uy)
because it is finite at the source point. If the procedure described in appendix E, section E.1, is
followed, the integral in expression (E-33) reduces to

ro(l+ m

€) ]
lim Yhr @) dr = - In 62 . -34
6—0Jr,(1-¢) () 4ar (E-34)

The modal excitation coefficients Aff_, can now be obtained through substitution of the

m

limiting results (E-8) and (E-34) into expression (E-33), resulting in




kgn 1 R gm(” s)

A P
RY

1

Al =— -
LY i
m 4r, sinv,n

m=1,23,... (E-35)

It should be noted that the above result differs in sign from the one given by Wait (reference 1).



APPENDIX F
DERIVATION OF VERTICAL ELECTRIC DIPOLE (VED)
ELECTROMAGNETIC (EM) FIELDS

In this appendix, the electromagnetic (EM) fields radiated by a vertical electric dipole (VED)
in a spherical earth-ionosphere waveguide are derived through the use of the spherical wave
formulas derived in appendixes A and C. The fields can be expressed in terms of a transverse
magnetic (TM) mode expansion.

F.1 MODAL EXPANSIONS OF EM FIELDS

Consider a radially-directed electric dipole of moment p =I dli that is located at the radial
distance r; = a + z; along the 8= 0 axis of the spherical earth-ionosphere waveguide shown in

figure 1-1. The electric dipole can be mathematically expressed in terms of the electric current
density vector J as

J=FJ =Fpé(r-r), (F-1)

where 7 is the unit radial vector, r and rg denote the position vectors of the observation and
source points, respectively, and d denotes the Dirac delta function. The function §(r - r,) has the

SI units of m™3 and can be represented in spherical coordinates as

_O(r-r) 6(6)

Or-ry = 2mr2 sin (F-2)
The spherical coordinate system is illustrated in figure 4-1. Note that
ff o(r-r)dv=1, (F-3)

where the integration domain extends over all space.

To determine the expressions for the EM fields radiated by the VED, one must first obtain the
differential equation for the electric Debye potential ¥¢ within the spherical waveguide (defined
by the region a <r < a+h) with an excitation current given by expression (F-1). From equation
(A-6), appendix A, the differential equation for the magnetic vector potential A4 is given by

VxVxA-k2A =- jou, e VO°+u_J, (F-4)

F-1




where 1, is the permeability of free space, €, is the permittivity of free space, k= o /H £, is
the wave number in free space, and @¢ is the electric scalar potential. Following the procedure
shown in appendix A, section A.1, if one sets A = 7 A and applies the gauge condition given in
expression (A-18), the differential equation for 4 reduces to

(v2+i2) B =— e, 7. F-5)

where V2 is the Laplacian operator. It should be mentioned that with the gauge condition (A-18)

chosen and with only a radial component of electric current, the 8 and ¢ components vanish on

each side of equation (F-4). From the definition (A-26a), the magnetic vector potential component

A, can be expressed in terms of the radial component of the electric Hertz vector ¢ as
A, = jou,e, e . (F-6)
From the definition (A-29a), the electric Debye potential ¥¢ is expressed in terms of ¢ as

J-[e

pe="r (F-7)

The substitution of formulas (F-6) and (F-7) into (F-5) yields

1 I, )
Jjoe, T~ (F-8)

(V2+k2) we=-

For the VED excitation with current density given by (F-1), the differential equation (F-8)

becomes

(V24 k2) we=- P_str-r) . (F-9)

Joe 1.

It should be noted that on the right side of the above equation, » has been replaced by r, because
the expression vanishes everywhere except at » = r;. The solution of the above differential

equation at source-free points (r ? ry) is derived in appendix C, section C.1, and is given in terms

of a modal expansion as

Ye(r,0) = ’IZO A RS (1) P, (- cos 0), (F-10)

where n denotes the mode index, R is defined in formula (C-10), u = k7, A¢, is the excitation

coefficient of the nth TM mode, B¢, is a constant that is given by either expression (C-7a) or (C-

F-2



7b), h{"(u) and h®X(u) denote the spherical Hankel functions of the first and second kinds

respectinvely, of ord;r V,, and P, denotes the Legendre function of the first kind of degree v,
and order zero. The complex co;stant V,, is determined from the solution of the characteristic
equation (C-8). The modal excitation coefficients Af,n depend on the source strength p/we,r,.

The term A?, is derived in appendix E, section E.1, and is given by

n

; R¢ (u)
e _Jnap 1 Vo S — -
A"n_ 4r, sinv,n “Re 7,1 =012,.., (F-11)
vV

where 1, = ,/u /¢, is the intrinsic impedance of the free space. In expression (F-11), | R?
denotes the L, norm of Re and is defined as

E\/f Re(u) % du ,n=0,1,2,.. (F-12)

where u, = k,a and u; = ky(a+h).

The EM fields radiated by a VED are given in formulas (C-11) with modal excitation
coefficients given by expression (F-11). Therefore, the VED EM field components in spherical
coordinates are given as

_ Jou,p S Va(Vat 1) Rv( s)

ve
Er= drau =6 sinv,m ||Re v( ) P, (—cos 0) , (F-13a)
' S R; (uy)
ve _ JOU,P 1 v\%s) g e
" 4ru #&ysinv,n |RS 7 3 RV, (1 )] P, (~cos ), (F-13b)
and
- R¢ (u
=5 T S) Ry )aep (=cos 6) . (F-13c)

4r, =y sinv,n "Rf/
n

In the above formulas, the superscript ve refers to a VED source.

Following Wait (reference 1), the effectiveness of a source can be characterized by an
excitation factor A? and the height variation of the fields by the height-gain function G4(2) -
These quantities are defined as follows:

F-3




K [RSw|

Al = 5 NRe 5— »n=012,., (F-14)
Vn
and
Rf, (u)
e 1y — o] -
Gi(2) = Rf"(ug) n=012 .., (F-15)

where z = r — a is the radial distance measured from the surface of the spherical earth (see figure

1-1). Following Galejs (reference 2), a z-dependent normalized impedance is defined as

Ee d”[uR” (u)]
(=) = _1 4 = — = 2 -
A(z) = N, B =j WRE ) n=012... (F-16)
Y \imode n n

The application of the definitions (F-14) to (F-16) to the VED formulas (F-13) yields

Eve — j’?oP S n(vn + l)

r)hr u = Sln v T (‘»5) Gn( )P\/( COos 6)5 (F-l7a)
<t n= n
B = ;’;i’rp ] Sinlv — A5 470) Gi(z) Gi(2) 35 00 P, (~cos 6), (F-17b)
s n= n
and
HY = 2Zh 2 sinlv, A G4(z,) GE2) — ()6 P, (—cos 6) . (F-17¢)
= 7

The above expressions are similar to those given by Wait (reference 1) and Galejs (reference 2).
The radial variations in the formulas for each of the above field components may be
approximated in order to make them suitable for numerical computation.

If the VED and the field point are each located on the inner boundary of the waveguide
(earth’s surface), then z, = z = 0 or, equivalently, r,=r =a. Thus,

GiYz)=GY)=G0)=1,n=0,1,2,... (F-18)

In addition, from equation (C-6a), the z-dependent normalized impedance A¢(z) defined in

expression (F-16) reduces to

A0 = AL0)=-A,, n =0,1,2, .., (F-19)

F-4



where A, = Z,/1, denotes the normalized surface impedance of the inner boundary. The
substitution of the above simplifications into the VED field expressions (F-17) gives

Eve_ .]nap S vn(vn"' 1)

e
7 7 2hau, & sinv,m A5, P, (—cos 6), (F-20a)

ve  MoPAg
Eo =55 ,,20 sin v, A5 89 Py (-cos 0), (F-200)

and

ve P S 1 ei . ]
Hy = 3ha & sin Vv, An5g Pr(-cos 6) . (F-20c)

F.2 QUASI-TEM FIELDS

The tables of section 4.1 show that in the ELF band, all modes are nonpropagating except the
n = 0 mode. This mode is often referred to as the quasi-transverse EM, or quasi-TEM, mode. If
only the quasi-TEM mode is considered, the VED fields for a source and receiver each located at
the surface of the inner sphere (earth) are given as

jnop Vo(vo+ 1)

ve _ e a ]
By = Shau g Sinv,m AG P, (—cos 6), (F-21a)
ve _ nopAg 1 a
6~ 2ha sinv,m A58 a0 P, (-cos §), (F-21b)
and
ve _ P 1 8 )
H‘P " 2ha sinv Ao 59 00 ( cos 6) . (F-21¢)

The above field expressions are of primary interest in this report.
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APPENDIX G '
DERIVATION OF VERTICAL MAGNETIC DIPOLE (VMD
ELECTROMAGNETIC (EM) FIELDS

In this appendix, the electromagnetic (EM) fields radiated by a vertical magnetic dipole
(VMD) in a spherical earth-ionosphere waveguide are derived through the use of the formulas
derived in appendixes A and C. The fields can be expressed in terms of a TE mode expansion.

Consider a radially-directed magnetic dipole of moment K d/ that is located at the radial
distance r; = a + z, along the 8= 0 axis of the spherical earth-ionosphere waveguide shown in

figure 1-1. The magnetic dipole can be mathematically expressed in terms of the magnetic
current density vector M as

M=FM,=¢Kdl dr-r,) (G-1)

where 7 is the unit radial vector, r and r¢ denote the position vectors of the observation and

source points, respectively, K denotes the magnetic current, and é denotes the Dirac delta
function. Because an infinitesimal dipole of magnetic current is equivalent to an infinitesimal

loop of electric current (where the loop and dipole axes are parallel) through the relation K di =
Jjou, Ida (references 19 and 20), where [ is the loop current and da is the differential area

enclosed by the loop, equation (G-1) may also be written as
M=V joumdr-r), (G-2)

where m = I da is the current moment of the loop.

To determine the expressions for the EM field radiated by the VMD, one first needs to obtain
the differential equation for the magnetic Debye potential ¥* within the spherical waveguide
(defined by the region a <r < a+h) with an excitation current given by expression (G-2). From
equation (A-11), the differential equation for the electric vector potential F is given by

VxVxF—ngz——jw,uoeoV@h+soM, (G-3)»

where @* is the magnetic scalar potential. Following the procedure shown in appendix A,
section A.1, by setting F =7 F, and applying the gauge condition (A-24), the differential

equation for F reduces to




ro_g L, (G-4)

It should be mentioned that with the gauge condition (A-24) chosen and with only a radial

component of magnetic current, the 8 and ¢ components vanish on each side of equation (G-3).
From the definition (A-26b), the electric vector potential component F, can be expressed in

terms of the radial component of the magnetic Hertz vector xr/ as
F = jop e, ah . (G-5)

From the definition (A-29b), the magnetic Debye potential ¥ is expressed in terms of & I as

h
h—
Yh=—-. (G-6)
The substitution of formulas (G-5) and (G-6) into (G-4) yields
M
2 2 h__ 1 ™, _
(V2+k2) W = T T (G-7)

For the VMD excitation with current density given by expression (G-2), the differential
equation (G-7) becomes

(V2+k2) wh=-Tor-ry . (G-8)

It should be noted that on the right side of equation (G-8), » has been replaced by r, because the
expression vanishes everywhere except at 7 = r,. The solution of the above differential equation
at source-free points (r ? ry) is derived in appendix C, section C.2, and is given in terms of a

modal expansion as
wh(r,0) = m>-:1 A" RE (u) Py (- cos 0), (G-9)

where m denotes the mode index, R (.’ is defined in formula (C-23), A{_’, is the excitation

m

coefficient of the mth TE mode, B f.‘ is a constant that is given by either expression (C-20a) or

(C-20b), and the complex constant v,, is determined from the solution of the characteristic
equation (C-21). The modal excitation coefficients Ail, depend on the source strength m/r,. The

term Ail, is derived in appendix E, section E.2, and is given by

m



k R! (u)
R T AN N (G-10)
m re sin v, i “ Rg

In the above expression, | R” v and is defined as

” R!

5 E\/ [ “RE P (G-11)

where u, = k,a and u; = k(ath).

The EM fields radiated by a VMD are given in formulas (C-24) with modal excitation
coefficients given by expression (G-10). Therefore, the VMD EM field components in spherical

coordinates are given as

K2m A V(P + 1) RE (u)

m . h
H.™= Tdru & sinv,n ‘} RQ “2 Ry (u) Py (—cos ), (G-12a)
va 2 k ( s) a Rh P 6 G 12b

6 —~ 4ru 1s1nvn”Rh "2 au[ ()] ( cos 0), (G-12b)

and

vm _. Jrlokom 1 ﬁ ( s) I 0
Ey=- > RY () 5 Pq, (—cos ) . (G-12¢)

4r, _1smvn” h”

In the formulas (G-12), the superscript vm refers to a VMD source. Following Wait (reference 1)

and Galejs (reference 2), the excitation factor Agz , height-gain function G,’,‘l(z) , and z-dependent

normalized impedance A,’?’l(z) for TE modes are defined as

2
L]

h = =12 -
Al = « YN m=1,23, ..., (G-13)
'\’m
Gh(z) = A — 123 (G-14)
m\~/ = Rgm(ug) s, m=1,2,3,.., -

and

G-3



uR" (1)
T ,m=1,2,3,... (G-15)

Evm
A4 =-x, = g
mode m a"["R (”)J

m H vm

The application of the definitions (G-13) to (G-15) to the VMD formulas (G-12) yields

kgn < V,,(v,,+1)

H"=- Dhri = sin v, Ay, Gh(z) Giz) Py (—cos ), (G-162)
- m= 1
g h
vm ]k n 1 0
H@ 2hrs -, sin V T Ah( ) m( ) G,ﬂ( ) @ P‘-,m(— COS 9) s (G-16b)
and
jn k. m .
E(‘;’” a 2(;’5101 ,;Zl sini“/ n zl Gr’flz(“ ) ng( )7g P (— cos 6). (G-16¢)
= m

The above expressions are similar to those given by Wait (reference 1) and Galejs (reference 2).

The radial variations in the formulas for each of the above field components may be

approximated in order to make them suitable for numerical computation.

If the VMD and the field point are each located on the inner boundary of the waveguide
(earth), then z; =z = 0 or, equivalently, ;= r = a. Thus,

Gl(z)=Glhz=GhO)y=1,m =1,2,3, ..., (G-17)

m

and the z-dependent normalized impedance A ,’,’1(&) reduces to

Al(z) = A0) = m=1,23,... (G-18)

n m

The substitution of the above simplifications into the VMD field expressions (G-16) gives

o0 — —
k m Vv, + 1)

i _ h _
H" = Shai, & sin vym Ay, Py (—cos 0), (G-19a)
[P N P, (- cos ) (G-19b)
O 77 2haA, & sinv,m n 60 ’
and
vm _ jnokom N 1 -
E, = 2ah 4= sinv,n "’ dB Pe,(=cos 6) . (G-19¢)

The above field expressions are of primary interest in this report.



APPENDIX H
DERIVATION OF HORIZONTAL ELECTRIC DIPOLE (HED)
ELECTROMAGNETIC (EM) FIELDS

In this appendix, the electromagnetic (EM) fields radiated by a horizontal electric dipole
(HED) in a spherical earth-ionosphere waveguide are derived from the vertical electric dipole
(VED) and vertical magnetic dipole (VMD) fields through the use of the reciprocity theorem.
The expressions for the nonradial field components involve both TM and TE mode expansions.

H.1 MODAL EXPANSIONS OF EM FIELDS

The Lorentz reciprocity theorem (references 19 and 20) relates a response at one source due

to a second source to the response at the second source due to the first source. Consider two sets
of impressed line-current sources (/;, K) and (Z,, K,) excited at the same frequency f, where /

and KX refer to electric and magnetic line currents, respectively. The EM fields produced by (7,
K,) are (E;, H;) and the fields produced by (/,, K,) are (E,, H,). If the line currents lie in a

linear, reciprocal medium, the reciprocity theorem applies and is given as
f (B, 1y~ Hy-Kodl,) = f (B, Lat, - By Kya,), @-1)

where dl; and dl, denote the differential length vectors along line current sets one and two,

respectively.

To derive the fields produced by a HED, consider the two coordinate systems defined in
figure H-1. In this illustration, the coordinates (x, y, z) refer to those of the HED, and the primed
coordinates (x’, y’, z°) refer to those of the VED (case 1) and VMD (case 2). The origin of each
coordinate system lies at a point on the earth’s surface, with the x-y and x~y” planes each lying on
the tangent plane defined at their respective origins. The distance a8 is the great-circle path length
between the origins of the two coordinate systems, where @ is the polar angle defined in figure
1-1. The reciprocity theorem is applied for two different cases. In case 1, an x-directed HED with
electric dipole moment 7; d/; is located at coordinates (x, y, z) = (0, 0, z,) and a z-directed VED
with electric dipole moment I, dl, is located at coordinates (x’, ¥, z) = (0, 0, z,). In case 2, an
x-directed HED with electric dipole moment I, d/; is located at coordinates (x, y, z) = (0, 0, z,)
and a z"directed VMD with magnetic dipole moment K, dl, is located at coordinates (x’, y, z*) =

H-1



(0, 0, z;). The radial component of electric field £ f" produced by the HED is determined from
reciprocity in case 1 and the radial component of magnetic field H f’“ produced by the HED is

obtained from reciprocity in case 2, where the superscript ke refers to a HED source.

HED

"
Y
. -
x
VED (Case 1}
VMD {Case 2)
GREATCIRCLE ~, % ...
PATH
{LENGTH = a#)
. z
- |
5 -y’

x'

Figure H-1. Coordinate Systems Defined in the Application of the Reciprocity
Theorem for Determination of the HED Fields

To determine E fe , consider case 1 in figure H-1. The application of the reciprocity theorem
(H-1) to the HED and VED sources yields

Ei’i,(x' =0,y=0,7'=z) Ldl,= E;i(x =0,y=0,z=z)1,dl, (H-2)

s

where E i’f,(x’ =0,y =0,z =z) is the vertical (radial) component of electric field from the HED
evaluated at the VED location and E'(x=0, y=0, z=z,) is the x component of electric field
from the VED evaluated at the HED location. Setting /; dl; = I, dl,, expression (H-2) reduces to

Efi(x'=0,y=0,'=z)=Ey(x=0,y=0,2=2) . (H-3)



LR _____

The left side of equation (H-3) can be expressed in spherical coordinates as Eff(r =r, 0,9,
where the spherical coordinates of the source point are (r, 6) = (r,, 0) and the spherical
coordinates associated with the field point are (r,, 6, ¢). Similarly, the right side of equation
(H-3) can be expressed in spherical coordinates as — E;ee,(r =r,, 8') cos @, where the spherical
coordinates of the source point are (r, 8") = (r,, 0) and the spherical coordinates associated with
the field point are (r;, 87 ¢”), where 6"= fand § = - §. The projection of E,, onto the x axis
is illustrated in figure H-2. Note that the azimuthal dependence is missing as an argument of
EJ;, because the VED fields are axisymmetric.

y
A GREAT-CIRCLE
PATH

7
EY® %) > X
x| \cp 0

ve
Ezel

Figure H-2. Electric Field Component Eg Radiated by a VED (Source 2)
Projected onto the x-Axis at the HED (Source 1) Location

If the above spherical coordinate substitutions are applied to equation (H-3), then

EX(r, 0, 9)=-Ey(r, 6)cos @, (H-4)

where the source numbers have been dropped. With the radial coordinate of the VED given by
r =r, and the coordinates of the field point given by (r,,6"), from formula (F-15), E ‘é‘? is
expressed as

jw“op N 1 Rf’n(us) a

Eg(r,, 6)= dru, nZO Sin v,,% ERf/ ’ W[uRsn(u)]

9 ,
) FTl Pvn(— cos 6), (H-5)

r

U=

where u, = k,7,. The substitution of expression (H-5) into (H-4) yields

H-3



= R¢ (u )
‘uop 1 d e
4r u, cos (;0 =( sin v, ERe 2 6u[uR (u)]

EM(r, 6, ¢)= ae,P (~cos 8') . (H-6)

Uu=u

The above formula applies for an x-directed HED located at (7, €) = (r,, 0) and the field point at
(ry, 6, ). If the HED is located at (r, 6) = (7, 0) and the field point coordinates are (r, 6, ¢), then

rs is replaced by r and r, is replaced by r, in expression (H-6), resulting in

° -é‘i—l[uRf,n(u)]

—= R¢ () a_ae_ P, (-cos 6), (H-7)

where 8= @and 0/066"=- 6/06.

To determine H f" , consider case 2 in figure H-1. The application of the reciprocity theorem
(H-1) to the HED and VMD sources yields

1, dl

h
Hy(x=0,y=0,7=z)=-E}(x=0,y=0,z= Z)Kdl

(H-8)

where H ”e(x =0,y =0,z =z,) is the vertical (radial) component of magnetic field from the
HED evaluated at the VMD location and EJ7(x=0, y=0,z=2,) is the x component of electric
field from the VMD evaluated at the HED location. The left side of equation (H-8) can be
expressed in spherical coordinates as H ff(r =r,, 6, @), where the spherical coordinates of the
source point are (r, 6) = (r,, 0) and the spherical coordinates associated with the field point are (r;,
6, ¢). Similarly, the right side of equation (H-3) can be expressed in spherical coordinates as

E"'" (r=r,, 0') sin @, where the spherical coordinates of the source point are (r, 8") = (r;, 0) and

the spherical coordinates associated with the field point are (7, 87 @), where 8’= fand ¢’ = - §.

vy

The projection of E, o Onto the x axis is illustrated in figure H-3. Note that the azimuthal

vrn

dependence is missing as an argument of E . because the VMD fields are axisymmetric.
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Figure H-3. Electric Field Component E;g Radiated by a
VMD (Source 2) Projected onto the x-Axis at the
HED (Source 1) Location

If the above spherical coordinate substitutions are applied to equation (H-8), then

e L L
By, s 6.0 == 70 Tj?i?l;

Ey(r,0)sing, (H-9)

where the magnetic dipole has been replaced by the equivalent infinitesimal electric current loop
of moment I, da,, where K, dl, = jou, I, da,. With the radial coordinate of the VMD given by
r =r, and the coordinates of the field point given by (r,, "), from formula (G-12c), E.”, is

2¢'
expressed as
ENr,, 6)=- J'%’Z%:Szdaz ,,: b Ri»é(“;) RE () o Py (-cos8) . (H10)
The substitution of expression (H-10) into (H-9) yields
Hr. 0, ¢)= ZI—]::’ sin @ ”: 5 i/mn Ileiziulsz) R} (u) 5%7 P, (-cos 6, (H-11)
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where p; = 1) dl;. The above formula applies for an x-directed HED located at (r, 6) = (r,, 0)
and the field point at (r;, 6, ¢). If the HED is located at (r, 6) = (r,, 0) and the field point
coordinates are (r, &, @), then r; is replaced by r and r, is replaced by r, in expression (H-11),

resulting in

S Ré()

k
he - p m
H(r,0,¢)=-—-sing P RQ

( )aBP (-cos 6), (H-12)

where 6= @and 0/06’= - /06, and the subscript 1 has been removed.

The remaining field components for a HED source can be determined from the Debye
potentials as given by equations (A-31). Because the Debye potentials for a HED have not yet
been determined, they must be derived from the radial field components given by expressions
(H-7) and (H-12). From equations (A-31a) and (A-31d), the radial field components are
expressed in terms of the Debye potentials as

Ef= ( ; g +1<2) (rve), (H-13a)
and
H"= ( a‘" g +k2) rh, (H-13b)

where ¢ and ¥ denote the electric and magnetic Debye potentials, respectively. Given the
expressions for Efe and H fe in formulas (H-7) and (H-12), respectively, suitable forms for ¥*
and ¥" are as follows:

- d
e — e e _ -
Yeé=cos @ nz=:o Av,, Rv,,(”) 30 Pvn( cos 6), (H-14a)
and
Yh=sin @ i A" R (w) 9 p (- cos 6) (H-14b)
m=1 Vm Vm 60 ‘Vm ’

where A¢ and A% denote the TM and TE mode expansion coefficients, respectively.

" From the relation (C-12),



2 v (v, +1)
(;2 +k2) [er,n(u)}=~—l‘—~——-;-.’—-——Rf,n(u) ,n=0,1,2,..,

and

2 v (v, +1
(& i)t )= S D Ry =25

(H-152)

(H-15b)

The substitution of expressions (H-15a) and (H-15b) into (H-14a) and (H-14b), respectively,

yields

h_k e e
E —-cosqoZA v(v +1) RY (u) P(cosG),

r
and
he k 0 o S h h
H"="2sing ZlA V(7 + 1) RE () == P (~cos 6) .
m=
A comparison of formulas (H-7) and (H-16a) shows that

aau[uRe (u)]

a4 = JOMP 1 1
Voo 4u; v (v, +1)sinv,m “ R¢ uz

u=u

Similarly, a comparison of formulas (H-12) and (H-16b) yields

h
kP 1 AT
9 > . m=1,2,3, ...

Al =— R ——
m V,(V,+1) sSinv,n " R(_’,

: ., n=0,12,...

(H-16a)

(H-16b)

(H-17a)

(H-17b)

The substitution of expressions (H-17a) and (H-17b) into (H-14a) and (H-14b), respectively,

yields

%[uRgn(u)]

u=u,

Jou,p 1
ye= 2 Ccos z:
4u ¢ =0 v(v +1) sinv,n HRf, 2

0
Rf,n(u) FT] PV"(— cos 6) >,

(H-18a)

H-7



k © R! (u)
ph=_ZP G0 1 1 ny RE () =5 P (-cos6) . (H-18b)

4 m=1 Vm(vm+ 1) sin V n’

From formulas (A-31), the remaining HED field components are given in terms of the Debye
potentials as

1 92(rye) Jjou, o

he _ 1 _ _
Eo =% 356 ~sno ag (H-192)

2207 h
he _ 1 0 (rI’) L4 :
¢ " rsinf dro@ *Jjou, g a6 ’ (H-195)
he _ Jog, 3WC 1 20r¥h )
 “sinf Jdgp YT Torag (H-19¢)
and
he . 0¥ AR 48!
Hy =-jwe, a6 t7sin g arog (H-19d)

The substitution of the Debye potential expressions (H-18) into the HED field formulas given
above yields

da"[uRe (u)]

jk2n p cos @ 1 u=u, g 2
Ehe — J o'lo .0 . Re P s
o dug = v (v, +1) sinv,xn “ R¢ "2 au[' (")} (~cos 0)
] - R" (u) 4
-leuokop Cos @ 1 1 vl d
2 z R (1) — P (-cos 6), -20a
4 sin 6 =1 V,,(V,,+1) sinv,x R! 2 ‘Vm( ) 06 Vn,( ) (H-202)
. % %[uRf, (n)
Jjou p sin ¢ 1 1 " w=u, §
EM=_ o - [ R¢ ] P, (-cos 6
¢ 4r u sin 6 nZO v, (v, +1) sinvx H R |? 2l RS (1) , (= cos 6)
jou k _psing X R (u)) 02
—— Zp ! : Lo 2 RE ()~ P, (~cos §),  (H-20b)
nt= 1 v"l(v”l + 1) Sln v n ‘l Rg )0 m
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k psing o 1 1
Hg =7 - R? P cos 6
O drsinb &=y (v, +1) sinv,a Re |? (0 55 P (- )
k psi N R! (u) 92
_ 0p481n @ _ 1 B ) 9 [ RE (u)} 5 Py (—cos §),  (H-200)
T me1V,(V,+1) SInv,x N Rz—’,' ou 00
and
0 1
= Re |
ok poos & | 1 au[” Vn(u)] - , |
Hy'= 04 ' 3 * R? (u) —5 P, (- cos 0)
¢ Ts  a=ov,(v,+1) sinvx " R¢ AAFY:
= h
kop cos @ 1 1 R ( ) A
~ 4rsin@ mzl v, (v, +1) sinv,m RE 2 au[”R (“)] P, (-cos 6) . (H-20d)

Formulas (H-20) show that, unlike the VED and VMD fields, four of the six HED field
components involve the superposition of both TM and TE modes.

Following Wait (reference 1) and Galejs (reference 2), the HED formulas can be expressed in
terms of the excitation factor, height-gain function, and normalized impedance defined in
expressions (F-14) to (F-16) and (G-13) to (G-15). The application of these functions to the
HED formulas (H-7), (H-12), and (H-20) yields

he _ T’op 1 e re e ern i _
E," ==y~ cos qonzo SV Af Al(z) GYz,) Gi(2) =g v (- cos 0 (H-21a)
o= Ko eos 0 3 1 L Ae A4z)) A%2) G¥(z,) G&(2) ~— 0 P, (~cos 6)
? 2h A=0 V(v + ) sinv,m oS n n\es) Inl) Hg2
Jnk,p cos ¢ " 1 1

Al G h
2hsin® &4y (v +1) sinv,m A Gz Gp(D) 55 P (-cos ),  (H-21b)




he_jw:uopSinq) N 1 1 e Ae(~ e~ e~ e-,_(z_ -
EfP - 2hsin O n=0 Vn("n + 1) sin V,,ﬂ An An(“s) An(‘) Gn("s) Gn(“) 00 Pv"( COS 0)
_indopsing § 1 L Ah Gh(z) GI) o P, (- cos 6) H-21c)
2 L, Vm(‘—’m +1) sin v,m m Tm\es) Tm\c 902 " n S s -
H”e=—~p—sinqp S G”(")Gh(7)—§—P (- cos 6) (H-21d)
r 2hr e sin v, g om ST g0 vy, ) ’
he___jkopsm(p N 1 1 e Aer. e~ e-,.i
H9 T 2hsin0 “~h v (v, +1) sin v T An An("s) Gn(“s) Gn(*-) 00 P‘,n(—- cos 6)
+ jkop sin @ N 1 1 h 1 Gh(" ) Gh(’/') iz_ P_ (- cos 6) (H-21¢)
2% o, an(v')l_*_ 1) sin \—,mn m A;l;z(:) m\cs m\< (,)92 7, S »
preo KPS0 L A% A%(:) iz GED) - P (- cos 0)
¢ = 2 &y (v, + 1) siny,m n s TS P 02 T,
Jkopcos @ 1 1 n_1 J

: —— A Glz) GI(2) == P, (~cos ).  (H-
2h sin 6 m=1 ‘—’m(‘—’m +1) smv,x 7 A,}:I(Z) m( s) m( ) 00 "m( cos 6) H 2”)

The above expressions are similar to those given by Wait (reference 1) and Galejs (reference 2).

The radial variations in the formulas for each of the above field components may be

approximated in order to make them suitable for numerical computation.

If the HED and the field point are each located on the earth’s surface, thenz, =z =0.

Therefore, the height-gain functions reduce to
Giz)=G()=G40)=1, n =0,1,2, .., (H-22a)
and

Ghiz)=Gl(x)=G"O)=1, m =1,2,3, ... (H-22b)

m

h

In addition, the z-dependent normalized impedances A¢(z) and A}

(F-16) and (G-15), respectively, reduce to

(z) defined in expressions
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A =40)=-A,, n=0,1,2,..., (H-23a)
and

Ah@)=AL0)=-4,, m =1,2,3,. (H-23b)

The substitution of the above simplifications into the HED formulas (H-21) gives the following:

00

A
he _ Mo gp 1 d
B = 8 @ ! sin v, A, 3g Pv,(-cos 0, (H-24a)
TR ekl 2 L pe L p, (~cos6)
o n=0 +1)smvn ”692
Jnk, pcos @ N 1 1 9 )
2hsin@ &=y (v +1)sinv,n " 59 Do (-Cos 0), (H-24b)
he J(UMO gp sin @ 1 0
Ey = 2h sin 0 Zv(v +1) sinv,m "66P (= cos 6)
_Jnk,psing e 1 1 e
2h m=1 Vm(\_’m'l' 1) sin v, Am 962 v (—cos 0), (H-24c¢)
he__ P o o1 :
Hy" == 55q 50 ¢ 24 G5 Angg o, (- c0s 0), (H-24d)
k A psin @ <
he_ '] 0 gp w 1 a
" 2hsinb =ov(v +1) sinv,x ”GBP( cos 6)
Jk psin @ S 1 1 , 02
TTARA . A P, 0 -
2hA, Ay (v, + 1) smv,m m gz el 0 (H-24¢)
and
Jk A pcos ¢ < 52
Hf];e= : gzh L _1 A% — P, (- cos 0)
nzo V,(v,+ 1) sinv,m " a6c ¥
Jk,pcos @ . 1 | 1 9
“ShA sin@ . Al — P ) .
2hAg Sin @ A= v, (V,,+1) sinv, """ EL ( cos 0) . (H-24£)
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H.2 QUASI-TEM FIELDS

The tables of section 4.1 showed that in the ELF band, all modes are nonpropagating except

the n =0 TM mode. This mode is often referred to as the quasi-transverse EM, or quasi-TEM

mode. If only the quasi-TEM mode is considered, the HED fields for a source and receiver each

located at the surface of the earth are given as

Ehe . noAgpAg 1 d

P, (—cos 6) cos @,

rT 2ha  sinv,m 96
jk m A2pA¢ 52
Ege=— =& 2 1 1 (ﬁPV(—cosﬂ) cos ¢,
2h v,(v,+ 1) sinvm 96 Yo
; 2 e .
he _ Jw‘qugpAo 1 1 1 d i
£y = 2h v, (v, + 1) sinv,u sin 8 96 Py (-cos 6) sing,
he jkoAgpAg 1 1 1 d _
= — P (-cos @
o 2h v, (v,+1) sinv, m sin@ 06 v (-cos 0) sing,
and
jk A pA 22
hf’: S . 1 ; 1 5P, (—cos 8) cos ¢ .
¢ 2h v (v,+ 1) sinv,t 96% Yo

(H-252)

(H-25b)

(H-25¢)

(H-25d)

(H-25¢)

Note that the radial magnetic field component H :’e is not listed above because it is expressed

only in terms of TE modes.
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APPENDIX 1
THIN-SHELL APPROXIMATION TO THE
RADIAL DEPENDENCE OF THE FIELDS

The spherical waveguide formulas derived in appendices F, G, and H involve the Legendre
function of the first kind for the 6 dependence and the spherical Bessel functions for the r (radial)
dependence, where each function is of complex order. Exact and approximate representations
for the Legendre function are presented in appendices J and K. Galejs (reference 2) has
presented an approximate formula for the radial variation of the fields under the condition A /r «
1. This approximation, referred to as the thin-shell approximation, is suitable in the extremely
low frequency (ELF) band and provides results of qualitative accuracy in the very low frequency
(VLF) band. In this appendix, a derivation of the thin-shell approximation is presented and
applied to obtain approximate solutions of the transverse magnetic (TM) and transverse electric
(TE) mode characteristic equations. Thin-shell approximations for the mode excitation factors,
the height-gain functions, and the z-dependent normalized impedances are also presented.

I.1 APPROXIMATE SOLUTION OF THE RADIAL DIFFERENTIAL EQUATION

In appendix B, it is shown that the radial dependence of each Debye potential is given in
terms of a function R, (), u = k,r, which satisfies the following differential equation:

a‘{-(ﬂ dfrV) + {(kor)z -v(v+1)[R,=0. -1

As shown in appendix B, two linearly independent solutions of the above differential equation
are given by the spherical Hankel functions of the first and second kinds, 2{"(#) and AP (u),

respectively. Consider the following function:

W =rRkr) . (1-2)

The substitution of the above function into equation (I-1) yields the following differential
equation for W, (r):

_v(v+l)

W, (r) + | k2

W,(N=0 . @-3)

72
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For r — 8 or for fields in a thin shell of 2 /r « 1, the radial variable r that appears in brackets
in the above equation may be approximated by its average value 7 in the shell that is given by

ref=a+e, 1-4)

where €= h/a « 1. The application of the above approximation into the differential equation (I-
3) yields

W.(r) +k2, W (r)=0, (1-5)
where
+1
== o

If | v|» 1, then from formulas (K-26) and (K-27),
V(v +1) = (ka)? , (-7)

where k is the wave number in the 0 direction. From the approximations (I-4) and (I-7), k,,, in
formula (I-6) is approximated as
k2
£\2
(1 + E)

From the final expression in the above approximation, &,, can be interpreted as the wave number

2 2
krvgko—

gkg_kz(l_zé)skg-H, dacl . (1-8)

in the radial direction. Also note that the above approximation slightly underestimates the radial

wave number for all values of r.

The solution of equation (I-5) is given by
W =Ael +Be T, 1-9)

where 4 and B are arbitrary constants. From definition (I-2), R, is approximated as

W (r) ejkr\'r e_jkrv’
I3 v = -
Re—%—=A’"+Bi". (1-10)

A comparison of the exact solution (B-7) for R, with the approximation given above yields

e-]l‘: rnl

nPn) = <5, (-11a)

and

I-2



T T TSN T T .-

e_jkrvr
E(u) = — - d-11b)

The above approximations are used to solve the TM and TE mode characteristic equations that
are derived in appendix C.

L2 APPLICATION OF THIN-SHELL APPROXIMATION TO TM MODES
Consider the characteristic equation for the TM modes given in expression (C-8). The

application of the thin-shell approximation (I-11a) to the derivative terms in formula (C-8) that
involve A{(V(u) yields the following:

ke gk, ek
ay =Li(ej')=hve -
oW\ F )R, T @-12)
and
d|uhM(u) , Jkr

Following a similar procedure for hﬂ,z)(u) , from approximation (I-11b), gives

dluh® _
[u dvu(u)] = (1 je,7) S5 (1-14)

The substitutions of the thin-shell approximations (I-11), (I-13), and (I-14) into the quotients in
equation (C-8) yields '

3| uhD(u)
1 _[_‘i___l — jA D)
U, ou vy g'v\g 1 .
g _ a—.](krv'l' Agko) e—jZk,.va
= |T—
] @t M Ao
1 _iAR®
ug ou —u jAgh*’ (ug)

k,,+Ak .

8§ 0 —j2k._a
g — | ——5 2 | e -15a
(krv_Agko) (I )

and




0| uh V()
ﬁl_; _L—J;I_] + jA R D)) 1 &+ AK)
' =u, ——— + +
= _ | a+h S * 2o o 2k faxh)
= 1 :
—jk.., —Ak
: E)[llhﬁ?‘)(ll)] o (a+h) Jk,, = AK,)
71'— ~an u:”.-l-‘]Aehv (Ili)
k. +Ak ;
o_ | o ¢, J2k, (a+h) ) (1-15b)
(krv - Aeko )

The final forms of approximations (I-15a) and (I-15b) are suitable because 1/a « 1. The
substitution of the above quotients into the TM mode characteristic equation (C-8) yields

kW"+Agk0 krv +Aek0 Jj2k,. h i2n
| e e e =T =0,1,2, d-16)
r'\/"— g 0 v —Ae o

n

In the above equation, the index n corresponds to the order of the TM mode. Note that there are

an infinite number of solutions to the above equation.

The TM mode characteristic equation (I-16) may be rewritten as

(1+Kn)(l+§)1) :e_jz(kr\'nh_nn) 5 n___o, 1,2,..., (1-17)

]-—K” 1—‘(;’]

where x, and {, are defined as

8§ 0
Kn=F (1-18)
Ak
Ea= 2 (1-19)

In the above expressions, note that a subscript has been added to the radial wave number to
indicate the mode index. The natural logarithm of equation (I-17) yields

1+, 1+&,\ . ~ .
In ( = Kn) +1n (—————1 — Cn = —J_(k”,"h — mr) ,n=0,1,2,.... (1-20)
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In the ELF band, the spherical waveguide boundaries appear as nearly perfect electric
conductors. Therefore, |Ag| « 1 and |A,| « 1 and the following conditions are valid:

lKnl«l’ Cn'«l. (1-21)
From reference 27,
Lex)_pl, 22,25, . x_f“)
ln(l_x)—Z(x+3+5+...)_2(x+3 ,Ixl« 1. 1-22)

The application of the approximations (I-21) and (I-22) into the TM mode characteristic equation
(I-20) results in

- K3 &
K, o+ Gyt s—j(krvnh—nn) ,n=0,1,2, ... (1-23)

The substitution of the variable definitions (I-18) and (I-19) into the above equation yields the
following quartic equation for k ,, :

n

(A, +A)k (A3 + A3 K3
e Bl P -J——g—u=o,n=o,1,2,.... (1-24)

h 3h

4 nw .3 _
krvn_ h krvn

rv

Approximate solutions of the above equation for the quasi-TEM mode (z = 0) will be determined
separately from the higher-order TM modes.

From the parallel-plate waveguide results given in section 2, it is known that the quasi-TEM

mode (n = 0) is the only propagating mode over most of the ELF band. If » = 0, the quartic
equation for k , given above reduces to the following quadratic equation for kfv :

o

A3+ ADK,
3h

(2]

=0 . ' 1-25)

rv h rv

., _[j(Ag+Ae)k0]k2

A solution of the above equation is

112
A, +A)k jak h (A3 + A3)
k2 =8 % 9/ 4|1t 8 ¢

™, 2h 3 ¢ Ag +A4) 2 (1-26)




Because the earth is more highly conducting than the ionosphere, the following simplification is
allowed:
3 A3
(A et A?) ~ 3A A,

— 8 A +A-—5 L =A 27,
(Ag+Ae)2 A Y 8

A

o <] 4. (1-27)

The substitution of the above approximation to the solution (I-26) yields

JA,+ Ak ok h 1
2 8 ¢ 9 - g —7
2, = 57 1+|1 7 (4,-24)

gj(Ag+Ae)ko
- h >

Af |« (1-28)

The above result corresponds with expression (87) on page 89 of Galejs (reference 2). Note that
as A P 0 and A, — 0O, corresponding to perfectly conducting boundaries, then & v, 0 and

k=k,, resulting in a purely TEM mode as described in section 2.

For the higher-order TM modes (# = 0), if only the first-order term in the series expansion (I-

22) is applied to the TM mode characteristic equation (I-20), the following quadratic equation for
k., is obtained:

JA+ ANk,

7 ]:O ,n=1,2.3, ... (1-29)

k2 _hrp o
m'n h m’n

Note that a factor of kfv has been removed from the original quartic equation because this

yields the trivial solution k , =0. A solution of equation (I-29) is given by

. 12
™, 2h (nr)?
HA+A K
ni 8 C [ . —
2 B S Ak |« 15 m=1,2,3, (t-30)

The above result corresponds with expression (88) on page 90 of Galejs (reference 2). Note that
the first term in the above expression corresponds to the cutoff wave number for the TM modes

in the parallel-plate waveguide with perfectly conducting walls as given in formula (2-15).
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To determine the thin-shell approximations for the excitation factor A¢, the height-gain
function G&(2) > and the z-dependent normalized impedance A¢(z) for the TM modes as defined
in expressions (F-14), (F-15), and (F-16), respectively, one must first obtain the thin-shell
approximation for the constant Be that appears in the radial function Re that is defined in
formula (C-10). The constant Be 1s given by either formula (C-7a) or (C -7b). The substitution

of the thin-shell approximations (I 11), (I-13), and (I-14) into formula (C-7a) yields

e 1+ j(krvna— A gkoa) o
BV & — e
1= j(krv a+ Agkoa)

vt n=0,1,2, ... I-31)

Therefore, the thin-shell approximation to the radial function R¢ is

n

T 1+ j(k,‘,na—Agk Oa) L )
RS (1) = —5— - ,n=0,1,2, ... (1-32)

Fool1- j(k,‘, a+ Agkoa) 4

The thin-shell approximation for the height-gain function G ¢(z) is obtained through substitution
of the approximation (I-32) into (F-15) and is given by

Ak,
G(z) = cos kn,nz _(k la -J k )sinkwnz ,n=0,1,2 ... (I1-33)
r

Vi

Note that in the above expression, » — a has been replaced by z, the vertical distance above the
earth. AtELF, the second term in the above expression is much less than the first term, resulting
in the following:

Ak,
£lsink,, 2, n=0,1,2,.... (1-34)

™y

Gi(z2) = cos k,vnz +j

The above result corresponds with expression (93) on page 93 of Galejs (reference 2).

The thin-shell approximation for the square of the L, norm of R ¢S IR, 2 , is obtained

through substitution of the approximation (I-32) into the definition (F-12) and is given by



a+h 2
jkrv r 1+ j(k”,n(l - Agkoa) ‘jkrv (r-2a)
LA | — dr
1- J(kn,na + Agkoa)
a
. 1+ jlk. ,a-Ak.a
_k, ok a J J2k ) g J( ™, 8o )
= = e n —_ ")k (€ no o— ) —2n )
r “Krv, 1- J(kr‘, a+ Agkoa)
2
1+ ](k,\, a —Agkoa) .

+ - (e_jzk"’nh— 1) ,h=0,1,2 ... (1-35)

If the square of approximation (I-32) is evaluated at » = a, then

2
j2%, a 1+ j(k”, a-A gkoa) 1+ j(kr‘, a-A gkoa)
[Rf, (llg)]2 = ) " 1=-2 " + n
: 1- j(k,‘,"a +A gkoa) 1- j(km,na + Agkoa)
n=0,1,2, .... (1-36)

The thin-shell approximation for the TM mode excitation factor A{ is found through the
substitution of approximations (I-35) and (I-36) into the definition (F-14), resulting in

r""

. sin2k,, b [sin2k,, h Ak, 2 ! 24k,
Avs{ It o ! - PR
Zi ] ““rv, (kwna) “,”(l

(k,,,”a)(k”,”h) ¥ kfjnl: ,n=0,1,2, ... (1-37)
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Note that in the ELF band, k,, 1 — 0, | 45| « 1, and | 4, | « 1, and, therefore, the above result

reduces to A =0.5.

The z-dependent normalized impedance for TM modes, A/(z), has been defined in formula

(F-16). The substitution of definition (C-10) and the thin-shell approximations (I-13), (I-14), and
(I-31) into the numerator of formula (F-16), in appendix F, yields

x r |1 +j(k a-Ak a —jk ., (r=2a)
0 . el v, "Vn g0 . e
URS (w)|={1+ jk —— 1~ jk = . (I-38)
alI[ Va ] ( rvr) r l_j(krv a+Agkoa) ( "’r) r

The substitution of approximations (I-32) and (I-38) into expression (F-16) gives

- krvn[(z+a) Ak a+ jz] cos k e J

1+ (k,vn(z+a))(krv a) - jA gkoa} sink,, z
Al(2) =

2

k (z+a)|k,, acos km,nz - (1 - jAgkOa) sink,, 2

n=0,1,2,... I-39)

Note that for points on the surface of the earth, z = 0, the normalized impedance reduces to
A 0) =-A4,.

L3 APPLICATION OF THIN-SHELL APPROXIMATION TO TE MODES

Consider the characteristic equation for the TE modes as given in expression (C-21). As

mentioned in appendix C, the TE characteristic equation is equivalent to the TM characteristic
equation (C-8) if A, is replaced by 1/A, and 4, is replaced by 1/4,. Therefore, with the

appropriate substitutions applied to the approximate TM mode characteristic equation (I-16), the
TE mode characteristic equation is given by

kA +k k.. A +k : .
krvag ko kr\ mAh ko e]2kwmh 1= ejzmn m=1,2,3, ... (1_40)
v, 58" "o m,~h~ Yo

In the above equation, the index m corresponds to the order of the TE mode. Note that there are
an infinite number of solutions to the above equation.



The TE mode characteristic equation (I-40) may be rewritten as

(i + ”2) 1 * E’n = e_jz(kﬂ'mh_m”) , M= 1, 2, 3, EETIPY (1'41)
- m 1 - é’”l

Al

Al

where &, and {, are defined as

k. A
=, ™V 8
Rn= = (1-42)
and
- kn‘f Ah
an = km . (1-43)

In the above expressions, note that a subscript has been added to the radial wave number to
indicate the mode index. The natural logarithm of equation (I-41) yields the following:

1+& 1+ ¢
In{—2|+In|—22 :—jz(k . h—nm), m=1,2,3, ... (1-44)
(I—K’”) (1_(3111) "

In the ELF band, because the spherical waveguide boundaries appear as nearly perfect electric
conductors, then |4,| « 1 and |4;| « 1, resulting in the following conditions:

C”l

‘ K, I «1,

«1, (1-45)

The application of the approximations (I-22) and (I-45) into the TE mode characteristic equation
(I-44) results in

—3 &3
K -
K, + —3"1 +C,+ %’— = —j(k”.,mh —nwr) ,m=1,2,3 ... (I-46)

The substitution of the variable definitions (I-42) and (I- 43) into the approximate TE mode
characteristic equation (I-46) yields the following cubic equation for &, :

(Ag + A3
3k3

(Ag+A,))
k

[

3

v m

+ jh

k.o =jmmr, m=1,2,3,... 1-47)
The application of the conditions (I-45) to the above equation results in a negligible cubic term in
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k,, resulting in the following approximate solution:
. -1
J (4, + Ay

k ~ M
ki

™, h

m=1,2,3, ... (1-48)

The above result corresponds with expression (90) on page 90 of Galejs (reference 2). Note that
as A, —0 and A, — 0, then & > ma/h , corresponding to the cutoff wave number for the TE
modes in the parallel-plate waveguide with perfectly conducting walls as given in formula (2-32).
Also note that if m = 0, then & w 0 and the TE fields are not excited.

To determine the thin-shell approximations for the excitation factor A,’}z , the height-gain
function G,’}l(z) , and the z-dependent normalized impedance A,’}l(z) for the TE modes as defined
in expressions (G-13), (G-14), and (G-15), respectively, one must first obtain the thin-shell
approximation for the constant Bh that appears in the radial function Rh that is defined in
formula (C-23). B” is given by elther formula (C-20a) or (C-20b). The substltutlon of the thin-
shell approx1mat10ns (I-11), (I-13), and (I-14) into formula (C-20a) yields the following:

A +j(k_aA —ka)

8 Wn 8 70 '
Bé - _ . e‘IZk’vm 5 m:l’ 2, 3, oo (I.49)

Ag—J(keraAg+k0a)

Therefore, the thin-shell approximation to the radial function R é is

jkrvmr Ag + j(km‘/maAg - koa) e_jkW (r-2a)
R: (W)= —5—-~ _ ,m=1,2,3, ... 1-50)
A,- j(krvmaAg + koa)

~N 3

The thin-shell approximation for the height-gain function Gf;(z) follows directly from G(z)
with A, replaced by 1/A,. Therefore, from formula (I-34),

k
fV"+JAk sink,, z, m=1,2,3,... (I-51)

m

Glz) = cosk

m

The above result is applicable at ELF and corresponds with expression (99) on page 94 of Galejs
(reference 2).
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The thin-shell approximation for the TE mode excitation factor Af;l follows directly from
A7, with A, is replaced by 1/4,. Therefore, from formula (I-37),

e Agk,_,m 2 ) sm”k,vl , A, 2 j”A Agkm, | sinZkﬂ,mh
m k ko || T\ K ka" k Tk h

m o re

iag\ (. A,
_(7;07{) (1 + T a (1 —COS 2k,‘_,mh) ,m=1,23, ... (1-52)

4

Note that in the ELF band, k,, # — 0 and with the conditions (I-45), then A” — 0. Therefore,

the TE modes are weakly excited in the ELF band. The z-dependent normalized impedance for

the TE modes, A”(z), is obtained through inversion of the formula (I-39) for A%(z) and with i

m
replaced by 1/4, and is given as follows:

~k (z+a)

v

Ak acosk‘_ (A—]ka) k_z}
Al(2) =

m

,Vm[(z+a)koa + jzAg] cos krvmz +J sin krf,

A8+A ( . (A+a))( ) Jk ,a

m=1,2,3, ... (1-53)

Note that for points on the surface of the earth, z = 0, the normalized impedance reduces to
Al©0) =-A4,.

m
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APPENDIX J
LEGENDRE FUNCTION P, (-cos ) AND ITS DERIVATIVES

The range dependencies of the spherical wave propagation formulas derived in this report
involve the Legendre function of the first kind P,, and its first two derivatives. In this appendix,

both exact and approximate formulas for P, are presented. The exact formula is expressed in
terms of an infinite series. The approximate formulas for P,, are restricted to particular ranges of

the argument. Comparisons of the exact and approximate formulas for P, are given for several

values of v that correspond to particular propagation conditions.
J.1 ASYMPTOTIC APPROXIMATION

A traveling wave representation of the spherical wave formulas derived in this report is
obtained from the first term in the asymptotic series for P,(- cos 6). From Erdelyi (reference 28),

if|v|» 1, Im{v} >0, and @is not near 0 or T, a suitable asymptotic approximation for P,(- cos 6)

1S

P(=cos 6) ~| = (v+1/2)sin 6

2 12
] cos [(v +1/2)(m— 6) — /4| . @3-1)

If the cosine is expressed as the sum of two complex exponentials, the above approximation
becomes

1/2
P (= cos 6) ~ lZn CESIORT 9] {e"p i+ 12)( - ) - 4

+exp [- v+ 12)( - ) + jn/4]} . (-2)

The asymptotic formula (J-2) may be rewritten as the superposition of two waves traveling in
opposite directions as

172 . . ”
Pv(— COS 6) ~ [m} ejkan [e—jkp + jea‘]kp’] , (J-3)
where
k=p-jo=Ytl2 ()



In the above formulas, & is the wave number in the earth-ionosphere waveguide, = 21/A and o
are the phase and attenuation constants, respectively, and 4 is the wavelength. In addition, p=
a0 and p; = 2ma — p are the direct and indirect great-circle path distances from the source to the
receiver, respectively, as shown in figure 4. Note that there is a 90° phase advance acquired by
the indirect great-circle path wave as it passes through the antipode (6 = ).

As shown in appendices F, G, and H, the range dependencies of many of the field expressions
involve either the first or the second derivative of P (- cos 8) with respect to 8. From equation
(J-3), the asymptotic formulas for the first and second derivatives of P, (- cos 8) with respect to

Qare

d 0 jka_ 1" ] o _ ;i

dg Puocos ) ~ |3 Iag e e e (J-5)
and

d? 1|2 (a0 ke[ -k, i -k,

WP"(_ cos ) ~ — T sin BJ (ka)><e [e +je ] -6

The above formulas are based on taking only the derivative of the exponential sum in expression
(J-3) because this is the dominant spatially varying part of the asymptotic formula for P, (- cos 6).

Note that there is a 90° phase advance in the indirect wave in the first derivative formula and a
90° phase decrease in the indirect wave in the second derivative formula.

The asymptotic formulas (J-3), (J-5), and (J-6) are useful in the determination of the relative
phase differences between the direct and indirect great-circle path fields. For ELF propagation
formulas based on the earth-flattening approximation, each indirect great-circle path field
component is obtained from the corresponding direct great-circle path component through
replacement of p by p; and with an appropriate phase adjustment as obtained from the asymptotic
formulas (J-3), (J-5), and (J-6). From these asymptotic formulas, the phase adjustments for the
indirect great-circle path fields are given in the table J-1. Note that the spherical components »
and 0 of the fields are replaced by the equivalent cylindrical components z and p, respectively.
This replacement is made because table J-1 is applied to the formulas based on the earth-

flattening approximation that are presented in cylindrical coordinates in section 3.



Table J-1. Phase Adjustment Terms for the Indirect Great-Circle Path Fields

Source Field Component(s) Primary Range Phase Adjustment
Dependence Term
VED E, P (- cos 6) j
d
E,,H, 90 P, (- cos 6) —j
HED E,Ey, H, 4 P, cos 0) _j
d2
Ep , H¢ :l? P (-cos 0) j

J.2 APPROXIMATE SERIES FORMULA SUITABLE IN THE VICINITY OF
THE ANTIPODE

In the previous section, the asymptotic formulas for P,(- cos 6) and its first two derivatives

are not valid for 0 near 0 or 7 (i.e., for field points located near the source or the antipode).
Therefore, these formulas are not suitable for observation points lying in the vicinity of the
antipode. MacDonald (reference 29) has derived an approximate formula for P,, that is valid

when its argument is at or close to one and is, therefore, valid in the vicinity of the antipode.
MacDonald’s formula for P,(- cos 6) is given as

P (~cos 0) = J(n) + sinz(Jt > 9) [ﬁ Ji () =J,(n) + g J3(77)} +0

sin4(“ 5 6 )} . 3-D

where

n=2(v+1/2) sin(g—g—e) =2ka sin(“T‘e) : J-8)

In expression (J-7), J, denotes the Bessel function of the first kind and order n. Note that

formula (J-4) is applied in expression (J-8). Expression (J-7) can be simplified through the use
of the following recurrence relation (reference 24) ‘

Jne1(0) = %,ﬂ D) =Jp_1(D) 3-9)

where # is a positive integer or zero, and z is an arbitrary complex constant. The application of
the above relation to the first bracketed term in formula (J-7) yields

J-3




ﬁ i) =) + 2 T = L () - 811_, (14937, . (J-10)

For observation points in the vicinity of the antipode, (7 - 6)/2 « 1 and

sin(l%—) 220 J-11)

e

As aresult, 17 can be approximated as

ne=kp,, (“59)« 1, J-12)

where p, = a (7 - 0) is the great-circle path distance from the antipode to the field point (figure

4). The substitution of expression (J-10) and approximations (J-11) and (J-12) to the two leading
terms in the series (J-7) yields

2
Pa

la
P (-cos 0) = Jy(kp,) [1 + %(7) } _ Pda

o (14 (kp)?| J1kpe) + pa<cd . (-13)

For field points in the vicinity of the antipode, the first term in the series (J-13) is dominant.
Therefore, for small p,, consider only the leading term of the above series, i.e.,

P (-cos 8) = Jy(kp,)

1+ —113(%2)2} . (1-14)

In the above approximation, the second term within the brackets accounts for the curvature of the
earth as p,/a increases. From Wait (reference 1), the bracketed term in formula (J-14) can be

approximated as
1 (pd)’
1+ ﬁ(ﬁq) =

where the error in the in the above approximation is O [(p,/a )*]. The substitution of the above

pla 12
P | (-15)

sin p/a

approximation into formula (J-14) yields

112
pda
sin pa/a} '

P (—cos 0) = Jy(kp,) [ (J-16)



In the above formula, J(kp,) corresponds to the range dependence for a flat earth and the
square-root term accounts for the curvature. Therefore, formula (J-16) is an earth-flattening
approximation to P,(— cos ) that accounts for curvature and is valid for field points located in
the vicinity of the antipode.

The approximation (J-16) has been applied in the development of some antipode-centered

ELF propagation formulas that were previously derived by the author (reference 7). From
formula (J-16), the first and second derivatives of P, (- cos 8) with respect to 8 are

112
d p - P4 i
40 P (—cos 6) =ka J,(kp,) sin p Ja , J-17
and
22 ) . o Ja 1/2
— P (- 0) = — (k Jakp ) ——J.(k 4 J-18

The approximate formulas for P (- cos ) and its first two derivatives as given in expressions (J-

16), (J-17), and (J-18) are required in order to reduce the vertical electric dipole (VED) and
horizontal electric dipole (HED) spherical waveguide formulas to the corresponding antipode-
centered ELF propagation formulas presented in section 4.3.

J.3 INFINITE SERIES FORMULA

The Legendre function of the first kind and degree v and order zero, P,, is related to the

hypergeometric series F as (reference 24)

P.(2) =F(~—v, v+l 1; 152), 3-19)

where F'is given as

F(a, b;c;2) = i @,(0)y 21 _ T i I'(a+n) I'(b+n) z»

“ ), T T@I® & Ty  nl- (3-20)

In the above series, I" denotes the gamma function and ( - ), denotes Pochhammer’s symbol
defined as




1, n=0
@),= . (d-21)
z+D(z+2) ... z+n=-1), n=1,2,3, ..

With the recurrence formula for the gamma function given by I'{z+1) =z I'{z), Pochhammer’s
symbol can be expressed in terms of the gamma function as

(z),,=%, n=0,1,2,... (1-22)
According to Abramowitz and Stegun (reference 24), the hypergeometric series (J-20) converges

for [z] < 1. From expressions (J-19) and (J-20), P,(- cos 6) is given by
1+ cos 6 o (-v), (v+1), (1 +cos )"

Pp-cos ) =F|-v, v+, L —F—|= & 2" (n!)?

(3-23)

Therefore, in the evaluation of P, (- cos 8), the hypergeometric series (J-23) converges for
0<0=m.

The derivative of P, (- cos 8) with respect to 8is given as

d(—cos 6)

P(cosB) P( cos 6) 70

=P (- cos 6) sin 6, (J-24)

where the prime denotes the derivative with respect to the argument —cos 6. From equation
(J-24), the second derivative of P,(—cos 6) with respect to 8 is given as

d?

deP( cos 0) = [P( cosB)smB] P( cos0)00§6+sm6 P( cos 6)

= P_(—cos 6) cos 6 + P_(—cos ) sin?6 . (J-25)

From the series formula (J-20), the first and second derivatives of the hypergeometric series are

%F(a, bic;) =L Fa+1,b+1;c+1;2) , (J-26)
and

d? (a),(b)

b= (§)2 2 F(a+2,b+2;c+2;7) . d-27)
J-6



From equations (J-19), (J-26), and (J-27), the first and second derivatives of P, (~cos 6) with

respect to the argument — cos @ are given as

P(~cos 6) = "(VT”) F(—v +1,v+2;2; 14 gos 0 ) , (1-28)
and
" - +1
P)(-cos 6) = S_X)z%"_); F(—v +2, v +3;3; 1—*-‘-2308—9) . (7-29)

The substitution of equations (J-20) and (J-28) into (J-24) yields

d v(v+1) (=v+1), (v+2), (1 +cos 6)"
4 P (~cos 0) = 2 T G T (3-30)
Similarly, the substitution of equations (J-20), (J-28), and (J-29) into (J-25) yields
d? v(v+l) (=v+1), (v+2), (1 +cos 6)"
d92P( cos ) = ——5—co SBZ 2" n! (n+1)!
V), (v+D), < (-v+2),(v+3), (1 +cos 6)"
L 0 2 2" nl (n+2)! (J-31)

In the evaluation of the spherical wave propagation formulas derived in this report, the Legendre
function and its first two derivatives are computed from formulas (J-23), (J-30), and (J-31).

Before computing the Legendre function and its first two derivatives from the series formulas
given above, a discussion of numerical convergence is in order. As an example, consider the
propagation parameters for the quasi-TEM mode at 76 Hz that are given in table 5-1. Under
daytime conditions, v=11.7 + j 0.880. Table J-2 provides a listing of the number of iterations
required for the series formulas to convergence to 15 decimal places for various values of 6. The
table shows that the number of iterations required for each function to converge increases with
distance from the antipode (6= m). As 08— 0 (source point), the number of required iterations
increases rapidly. This behavior is expected because formulas (J-23), (J-30), and (J-31) are
ascending series in the argument (1 + cos 6). In summary, for @ not too close to zero, not much
CPU time is required in order for these series formulas to converge.

J-7



Table J-2. Number of Iterations Required for the Infinite Series Formulas for P, (- cos 6) and
its First Two Derivatives to Converge to 15 Decimal Places withv=11.7 +j 0.880

0 (deg) P (- cos 0) Zl% P (- cos 0) d_d(); P (- cos 0)
10 3414 3827 4240
30 423 454 486
30 160 168 176
70 84 87 89
90 51 52 53
110 34 34 35
130 24 2 -
150 17 16 16
170 11 10 10

The series formulas for the Legendre function and its first two derivatives can be used to
check the accuracies of the approximate formulas (J-16), (J-17), and (J-18). Figures J-1 show

plots of the real and imaginary parts of the Legendre function and its first two derivatives as
computed by the series and approximate formulas given as functions of the polar angle 6,

measured from the antipode, where 6, =7 - 6.

The ranges of validity of the approximate formulas for the Legendre function and its first two
O derivatives as given in expressions (J-16), (J-17), and (J-18) can be determined through
comparison with the infinite series (exact) formulas. Figures J-1a and J-1b show comparisons of
the magnitude and phase, respectively, of the exact and approximate formulas for P, (—cos 8) as a
function of 6, for v=4.75 —j 0.440. This value of v corresponds to typical daytime propagation
conditions at 30 Hz as given in table 5-1. Figures J-2 and J-3 show similar comparisons for
dP (- cos 6)/d6 and 4 2 P (- cos 6)/d6?, respectively. The plots show that the exact and
approximate formulas are in excellent agreement out to 6, = 45°. Beyond this angle, the
approximate formula for the second derivative starts to slowly depart from the exact formula.
For example, at 6, = 45.1°, the approximate formula for the second derivative differs by 0.067
dB in magnitude and 0.95° in phase with the exact formula. In comparison, at 8, = 90°, the
approximate formula for the second derivative differs by 0.46 dB in magnitude and 8.32° in
phase with the exact formula. At 8,=170.1°, the approximate formula for the second derivative
differs by 2.18 dB in magnitude and 69.6° in phase with the exact formula. The approximate
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formula for dP, (- cos 6)/df shows better agreement with the exact formula than the second
derivative and the approximate formula for P,(—cos €) shows an even better agreement. This
observation is attributed to the fact that each successive derivative of the approximate formula
for P (—cos @) introduces additional error into the result. The approximate formula for P (—cos 6)
does not start to noticeably depart from the exact formula until g, = 150°, where the formulas
differ by 0.14 dB in magnitude and 2.26° in phase.

Comparison plots of the exact and approximate formulas for P (-cos €), dP, (- cos 6)/d,
and d?P, (- cos 6)/d6? as a function of @, are given in figures J-4, J-5, and J-6, respectively, for
v=15.9 - j 1.32. This value of vcorresponds to daytime propagation conditions at 100 Hz as
given in table 5-2. In these plots, the oscillations near the antipode are considerably damped
because of the larger attenuation at this higher frequency. Each of these plots show a noticeable
improvement in agreement as compared to the previous value of v. For example, at §, = 90°, the
approximate formula for the second derivative differs by 0.012 dB in magnitude and 1.88° in
phase with the exact formula; and at §, = 150°, the approximate formula for the second
derivative differs by 0.065 dB in magnitude and 6.47° in phase with the exact formula. As in the
previous set of plots, the approximate formula for dP, (- cos 6)/d6 shows better agreement with
the exact formula than the second derivative, and the approximate formula for P, (- cos 6) shows
an even better agreement. Further examination of the approximate formulas at other ELF
frequencies indicates that the accuracies of the approximate formulas for P (- cos 6) and its
derivatives improve with increasing frequency.
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APPENDIX K
EARTH-FLATTENING APPROXIMATION

As shown in appendix A, the electromagnetic (EM) fields in a spherical earth-ionosphere
waveguide can be expressed in terms of two Debye potentials. At a source-free point, each of
these potentials satisfies the scalar Helmholtz equation. As shown in appendix B, the Helmholtz
equation can be solved in spherical coordinates by the separation of variables method in which
the range or 6 dependence is expressed in terms of a function 7(6), which satisfies the following
differential equation:

d’T dr -

:l—éi+c0t6%+v(v+l)T—O . K-1)
In equation (K-1), v(v+1) is the separation constant. As shown in appendix B, for a source
located at 8= 0, the solution of equation (K-1) that is finite at the antipode (6= 7) is given by

T(6)=CP/(-cos ) , K-2)

where P, is the Legendre function of the first degree v and order zero, and C is an arbitrary
constant. Both exact and approximate formulas for P, (—cos ) are given in appendix J.

In the earth-flattening approximation, the polar angle 8 in equation (K-1) is replaced by the
range variable p, where p = a0 and a is the radius of the earth. Note that p is the direct great-
circle path distance along the spherical earth that connects the source and the field points (see
figure 3-2). The replacement of 6 by p/a in equation (K-1) yields

d’T 1 (P\dT |, »q_
3—‘-)7+5cot(a—)%+s Tr=0, (K-3)

where the constant s is defined as

K-4)

In his estimation of the error involved in the earth-flattening approximation, Pekeris (reference

12) assumed that 7(6) can be expanded in the following asymptotic series:
T(0)=T(pla)= 2, (@) Ty, (p) = T,(p) H(as) > Tp) + @) * Ty(p) + ... (K5)
n=

K-1



The series expansion of cot(p/a) is given by (reference 27)

col@)=(6)" - 36)- 35 (6) - 35 (&) - ®9)

The substitution of the series expansions (K-5) and (K-6) into the differential equation (K-3)
followed by the multiplication of s 2 yields

2 2 2
+(as) 2 —=2 +(as)"t ==
1 1 1 x3 dr, _ 4
T3 B [ (@)™ G e
+[T0+(as)‘2T2 (@) Ty+..]=0, (K-7)

where x = sp. Following Pekeris (reference 12), the coefficients of like powers of (as)™2 are

equated to obtain a system of simultaneous differential equations. The first three equations are

given as
L(T,)=0, (K-8a)
yry=1e, (K-8b)
and
LTy=% %ﬁ +2 % : (K-8¢)

where the differential operator L is given as

_d* 1.4
L=Sa 41 (K-9)

The solution of equation (K-8a) is
T, (p)=HP(sp) . (K-10)

The above formula gives the range dependence for a planar earth (with a source located at p = 0)

and represents the earth-flattening approximation. To obtain the solution of equation (K-8b), let



us consider the following differential equation that is valid for any cylindrical Bessel function
Z,(x) of arbitrary order »:

L[xn Z,]= 2n -gl [x2,0] - (K-11)

The above result was obtained from Koo and Katzin (reference 13). Note that Z,(x) refers to the
Bessel function of the first kind J,(x), the Bessel function of the second kind ¥, (x), the Hankel
function of the first kind H{"(x), or the Hankel function of the second kind H®(x). With the
assumed time-harmonic dependence of e/?? and an outward propagating wave from the source,

Z,(xy=H f,z)(x) in the present application.

The substitution of Z,(x) = H'®(x) and n =2 into formula (K-11) yields

L [x2 H<2>(x)] 4 % [x2 H§2>(x)] . (K-12)
The derivative of x2 H{?(x) is given by

4 [x2HP|=x2 HP'(x) + 20 HP () , (K-13)

where the prime denotes the derivative with respect to the argument. The substitution of the
recurrence relation (reference 24)

H(2) (x)=H (2)( x) — H(2)( x),
into equation (K-13) yields

4 [x2 HPW)|=x2HP@ =-x2 HP @) . (K-14)
The substitution of the above result into expression (K-12) gives
L [x2 H§2>(x)] =—4xHP'(x) . (K-15)

IfH (()2)(x) is replaced by 7,(p), formula (K-15) may be rewritten as
x a7,
_ A 2@ -
L[ x<H5( )} dx . (K-16)

A comparison of expressions (K-8b) and (K-16) shows that
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Typ) == 15 (s9)°"HP(sp), (K-17)
where x has been replaced by sp.

The substitution of formulas (K-10) and (K-17) into the asymptotic series (K-5) yields
2 4
T(pla) = HO(sp) - (&) HPspy + 0B . (K-18)

In the above equation, the first term corresponds to the model of a flat earth and the remaining

terms are corrections for curvature. Therefore, the earth-flattening approximation is given by
T(play = H®)(sp) . (K-19)

The earth-flattening approximation is valid when the great-circle path distance p is small
compared with the earth’s radius a. In particular, Pekeris (reference 12) found that the earth-
flattening approximation is correct to within 2% of the exact value for ranges out to about half

the radius of the earth. It should be noted that this result is independent of the frequency.

Next one needs to determine the constant C in formula (K-2) so that 7(6) can be related to
P (—cos 6). To obtain C, let 8 — 0 on each side of expression (K-2), giving

(}1_r>n0 Te)=C 011_r>no P (-cos ) . (K-20)

From equation (K-18),

dim 1(0) = lim T(pla)= lim H"(sp) . (X-21)
From Abramowitz and Stegun (reference 24),
. el o)
Jim H D(sp)=-jzIn(sp) > —-jzInp . (K-22)

From appendix E, formula (E-8),

Jim P (- cos )= SILV 1y 2 = 280 1B, 2SIy, (K-23)

The substitution of the limits (K-21), (K-22), and (K-23) into expression (K-20) gives



_ 1
C= jsinvi ' (K-24)

From expressions (K-2), (K-18), and (K-24),

P (-cos 0)

Tsmvn - LO)= 1(8) = HPGp) - 35 (&) HPGp) (K-25)

where the error in the above approximation is O(p /a)*. From formula (J-4), the wave number &
in the earth-ionosphere waveguide is given by

k=p-ja=YEtl2 (K-26)
If| v|» 1, then
(V+12)2=v(v+1) . (XK-27)

The above result is generally valid in the ELF band. The application of the above approximation
to definitions (K-4) and (K-26) results in the following approximation:

sk, ivi»1, (K-28)

Therefore, expression (K-25) can be approximated out to order (p/a)? as

P (- cos 6) 1 (p\2

v A H® g S 2) -
v = H k) L (O @)y, Wi 1. | (K-29)
The above formula is similar to the one applied by Wait (reference 1) in his development of ELF
propagation formulas. The formulas differ by a factor of j.

For | kp| » 1, the Hankel functions in expression (K-29) can be replaced by the first term of
their respective asymptotic expansions:

HPkp) ~ [ oy €707, (K-30a)
and
HP(kp) ~ , /57255 ¢~Jlkp = 51l4) (K-30b)

The substitution of the above approximations into formula (K-29) yields




2
1+ 2V s 1, lkpl» 1 . -31
12 \a p

Pv(_ cos 0) - 2 e—j(kp—n/4)
jsinvae '\ mkp

From Wait (reference 1),

0 62
Vsng =1t13° (K-32)

where the error in the above approximation is O(84). The application of the above approximation

to expression (K-31) results in

P (- cos 6)
Jj sin v

= H?(kp) Sir’l’/;’ — ., vi» 1 lkpl» 1, (K-33)
where the asymptotic approximation in expression (K-30a) has been replaced by H?(kp). In
the above approximation (K-33) for P (- cos 6), H g.z)(kp) corresponds to the range dependence
for a flat earth and the square-root term is the correction for curvature. As was noted following
approximation (K-29), expression (K-33) also differs with the one derived by Wait (reference 1)
by a factor of j. Formula (K-33) is referred to as the earth-flattening approximation with

curvature correction for P, (- cos 6).
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